Week 13: Phytonutrients - Nature's Unknown Soldiers

Look deep, deep into Nature, and you will then understand everything better.

Our favorite scientist/theoretician/paragon of genius, Albert Einstein, spent no time engaged directly in food or nutrition science, but many of his quotes belied a sensitivity toward - and appreciation for - Nature's unmatched holism. That term - holism - was coined by South African statesman and philosopher Jan Smuts, in his 1927 treatise, 'Holism and Evolution' - which he dashed out during that year's parliamentary recess. It championed a focus on systems rather than parts. The idea of studying isolated components of things has constituted the lingua franca of the scientific community since the onset of the modern scientific method - an attitude that is just now beginning to change in favor of the systemic inter-relationship of things that Smuts and Einstein saw as self-evident. The ur-example is Nature itself. It is utterly impossible to remove one element or aspect of its system without inducing a (usually harmful, often cataclysmic) domino effect, whether that element is a single food nutrient among hundreds, like the enzyme lactase in milk which, once pasteurized, is killed, severely reducing our ability to digest and absorb its lactose (more on this later); or like Yellowstone's wolves - whose 1995 re-introduction has led to the wholesale rejuvenation of not just myriad animal populations but of willow trees and rivers, not to mention everything that depends on them (more on that amazing story here).

Enter the phytonutrient - aka phytochemical.

Most of us now know that we need vitamins, minerals, fats, proteins, carbohydrates and even fiber in order to live. [If you're unclear on any of it, we welcome you to read our posts up to this point, starting with Week 1's overview.] But what nutritional science is just beginning to understand is that while these substances are indeed our bodies' fuel, it is another entire category of sub-nutrient that may be the glue that holds everything together, and catalyzes the processes that allow us to use nutrients. Like the concept of holism, a plant's phytonutrients have a large effect on the conversion, quality, quality, availability and rate at which its nutrients are absorbed by (i.e.: of value to) our bodies and brains. In fact, there are so many phytonutrients that are unknown or continually being discovered, now that the scientific community is focused on it, that no one can agree on just how many there are out there; Google it, and you'll find quotes from 4,000 to 100,000 and beyond.

So what are they? They are a meta-category of chemical compounds that plants have evolved to protect themselves from everything from insects to germs, fungi and UV radiation. We also know that plants have roughly 64 times as many phytonutrients as the animals we eat, according to nutritionfacts.org. Studies, like the 12-year study completed in 2013 by the Universidad de Barcelona and published in the Journal of Nutrition, showed that diets high in polyphenols - the largest category of phytonutrients - led to a 30% reduction in mortality in older adults. According to the American Journal of Clinical Nutrition, those polyphenols - which were largely unknown before 1995 - strongly support the prevention of degenerative diseases, like cardiovascular disease and cancer. AJCN goes on to say that the antioxidant capacity of polyphenols dwarfs that of conventional antioxidants like Vitamin C and Vitamin E - by ten times and one hundred times, respectively. Moreover, antioxidants catalyze the conversion/production of the vitamins into forms our bodies can use, like beta-carotene in carrots into vitamin A (more on that later). 

Confused by terms like polyphenols, phytonutrients and antioxidants? We haven't yet mentioned enzymes, phytosterols, carotenoids and glucosinolates. And those are just categories. There are sub-categories, like organosulfurs, flavonoids, curcuminoids, lignans, xanthophylls and tannins (you've heard of that one - red wine!), to name just six. And then there are the chemicals themselves, which are too numerous to list.

Before you stop reading, we've gone ahead and created a graph in an attempt to demystify - both for you and for ourselves - the world of phytonutrients. This list is in no way exhaustive; it's simply meant to help you understand how the 'tree' of nutrients relates to the whole, what the categories are, what each one does - health-wise, and which (common) foods contain them.

Copyright FFFL

You can also direct download a larger copy of the chart here

In it, we've focused on the antioxidant category - at center image in dark blue, and expanded it below, in green, purple and orange. Antioxidants are both the largest and most important phytochemical class with regard to physical health. The other four categories (flanking the antioxidants), while extremely important, are relatively simple to explain, in brief: 

  • Enzymes serve to break down foods into nutrients, thereby improving our absorption of them. Nutritional scientists refer to enzymes as pre-digestive, because they begin to dissolve foods before the saliva in our mouths - produced by chewing - begins its own process as foods pass through on their way to our digestive tracts. As mentioned earlier, pasteurization deactivates all enzymes. This begins at 120F and is absolute at 160F - the legally required temperature by the Food and Drug Administration. Pasteurization - regulated since the 1950's, is why 65% of the population is suddenly lactose intolerant, according to Dr. Mercola, because the heating process kills the enzyme lactase in milk (and every other enzyme), whose job is to aid in the digestion of the nutrient lactose. Studies have shown lactose-intolerant people who consume raw milk products - as we reported in the second half of Week 4's post - can tolerate them without adverse effect.) A good article on why enzymes are important can be found here. It's also worth mentioning here that pasteurization has additional negative impact on the nutrient most people drink milk for in the first place: its calcium. Pasteurization renders insoluble the vast majority of the calcium milk contains. Meaning, the calcium in pasteurized milk passes through you, unabsorbed. This is a good example of what we mean when we talk about the interaction between nutrients, and the need for understanding foods holistically before we begin selectively re-engineering them.

  • Natural Acids are what gives foods their distinctive (and often strong) flavor, like the citric acid in lemons. Many are termed 'wholesome', and while they offer no direct health benefit, they are harmless; others are considered 'unwholesome', like the oxalic acid in dark, leafy greens. Overwhelmingly, the body can handle and dispose of them harmlessly. Occasionally, people do have sensitivity, such as those with kidney or gallbladder problems, in which case foods with 'unwholesome' acids should be limited. More info on Natural Acids can be found here.

  • Phytosterols inhibit the absorption of cholesterol. Thus people with diets high in phytosterols experienced lowered LDL (aka 'bad' cholesterol) levels, thereby reducing their risk of cardiovascular disease. A great overview on phytosterols can be read here. Phytosterols are predominantly found in wheat germ and vegetable oils.

  • Non-digestible Carbohydrates is a fancy term for what we call fiber. They are the 'insoluble' fibers of vegetables and fruit that give them shape - their structure, simply put. When ingested, these non-nutritive fibers pass through the body unabsorbed, while the vitamins, minerals, fats, proteins and phytonutrients they carry are absorbed. The major benefit of 'getting fiber in your diet' - by which we mean these non-digestive carbohydrates - is that they improve digestion and 'regularity' - and provide the added benefit of whisking along ingested toxins, thereby minimizing their contact with, and absorption by, the body. In addition, these 'prebiotic' foods play a role in gut health, lower body weight and lower cardiovascular disease. More on NDCs here.

Which brings us to the main category of this post - the buzziest of buzz words today: antioxidants. We reviewed these in brief in our last post, insofar as dark, leafy greens are one of the greatest sources for these - and many other - nutrients. As we mentioned then, the blogger Sophia Breene said beautifully in this article that antioxidants are not so much a substance as a behavior. As the name suggests, they reduce oxidation - called oxidative stress - of the various molecules inside your body. This is important because rampant oxidative stress creates 'free radicals' - those unstable cells that cause damage to you on a cellular level: your DNA, your proteins and your lipids. [We explained the molecular basis of free radical creation in our last post here.] As we said then, these free radicals are thought to be major contributors to a raft of modern disease, including cancerAlzheimer'sheart disease, stroke, Parkinson's, fibromyalgia, diabetes, agingcognitive declinemacular degeneration and ALS. Because of this, antioxidant phytochemicals - the largest and most important group, and one that only over the past 20 years has begun to be studied by scientists in earnest - are getting a lot of attention. So let's examine them.

As we mentioned, our graphic is incomplete. There are many major groups of phytochemicals, a (reasonably) full listing of which can be found here. We have chosen to include 3 of those in our chart, because they comprise the area of greatest study, and therefore nutritional value to you, through the food choices you make, insofar as looking to benefit from what the international nutritional science community has discovered. These include Glucosinolates, Polyphenols, and Carotenoids. Chemicals in all three categories provide significant antioxidant benefits. We will look here at what makes each group unique.

  • Glucosinolates: these sulfur-based compounds occur in two groups: organosulfurs and indoles. The former is found mostly in the alluvium family (onions, garlic, leeks, chives...) while the latter is found in brassicae (aka cruciferous vegetables) like broccoli, Brussels sprouts, kale, arugula, bok choy, cauliflower and others. All of these vegetables... well... stink. That's the glucosinolates. What they do is directly inhibit cancer cell growth, as well as directly kill cancer cells, by forcing their apoptosis. You see, all cells are programmed to die (apoptosis); cancer cells are great at avoiding that (i.e.: staying alive). Glucosinolates suppress carcinogenesis (the creation of cancer cells) 'in vivo' - meaning in live subjects - and have been shown to induce apoptosis (normal cell death) in cancer cells 'in vitro' - meaning in laboratories. I've include just one study - from 2003 by the NCBI - here. The research paper goes on to conclude that 'Brassica vegetables can exert a profound effect on the balance of colorectal cell proliferation and death in an animal model of colorectal neoplasia [aka uncontrolled growth of tumors or lesions]'. A diet, therefore, that includes daily intake of glucosinates like those listed above, has been shown in study after study to have an anti-carcinogenic effect on your body, to say nothing of the density of vitamins, minerals and other antioxidants they contain.

  • Carotenoids: these are what gives fruits and vegetables their orange, red or yellow color, as in papaya, carrots and mangoes, which are high in alpha-carotene; or, in the case of some vegetables, the green in chlorophyll may visually mask underlying carotenoids, such as in kale, spinach and chard, which are high in beta-carotene. There are two types of carotenoids: carotenes, like the alpha- and beta- ones mentioned; and xanthophylls, which are found predominantly in marine life, like shrimp, lobster, crabs and salmon, but are also present in red/yellow/orange vegetables and fruits. Xanthophlls include lutein, zeaxanthin, both of which are found in high quantity in the eye's macula. All carotenoids contribute to skin and eye health, while beta-carotene in particular has been associated with lower risk of macular degeneration, glaucoma, formation of cataracts, macular edema and other eye diseases. As far as xanthophylls go, this article by Dr. Mercola focuses on astaxanthin, which gives salmon its pink color. Dr. Mercola calls this 'the most powerful antioxidant' when it comes to free radical scavenging, 65 times more powerful than vitamin C, 54 times more than beta-carotene, and 14 times more than vitamin E. He especially advises older people to consume salmon (to which I'll add the qualifiers wild and Alaskan, for their low mercury and high omega-3 fatty acids...) because the elderly are at greatly increased risk of eye diseases. 

  • Polyphenols: I've saved this category for last, because it's the largest, with over 8,000 compounds, and the most complex. its six sub-classes - flavonoids (the largest, by far), lignans, isoflavones, curcuminoids, stillbenoids and tannins - all exhibit antioxidant qualities, but what each group does for human health is quite distinct. Our chart begins to break down the key benefits and foods each group confers. But perhaps THE key benefit is that high-polyphenolic foods are strongly anti-inflammatory as well as being anti-oxidative. As we've discussed in several posts, chronic inflammation is an environment of ill-health in which the body is in a constant state of aroused defense, using up nutrients and immune functions in an attempt to restore balance. Stress and lack of exercise are part of the cause; but diet is a major contributor, as well. Chronic inflammation has been directly linked to many cancers, Alzheimer's and heart disease. it is also considered largely a modern, diet-induced condition, because processed foods comprise 67% of our dietary calories, according to AJCN, and 90% of our food dollars, according to Eric Schlosser. Polyphenols - and more than any other group, the flavonoids - promote an anti-inflammatory response when ingested in sufficient quantity and variety, by 'blocking the messaging molecules that promote inflammation'. On the flip side, a reduction in the intake of inflammatory foods - processed anything, pasteurized dairy and red meat - aids the body in returning to a state of repose, i.e.: non-inflammation. Thus you should both increase your consumption of anti-inflammatory foods and decrease your consumption of inflammatory foods.

So what foods are high in polyphenols? It would be as knee-jerk as it is somewhat accurate to say 'all plant foods', since the production of poly-phenolic compounds is a byproduct of plants' efforts to protect themselves from both the ultraviolet component of the sun that feeds them and the predators that try to consume them. Thus a comprehensive discussion about foods and polyphenols is nearly impossible, and totally impractical. What we can do is focus on foods we typically consume, or can/should consume, and the polyphenols that make them valuable.

Flavonoids - the biggest polyphenol category, with over 6,000 compounds - are found in a giant cross-section of foods that by any other measurement have little to do with one another, from dark blue and purple foods, like beets, blueberries, purple carrots/corn, red berries, to white foods like bananas, celery, onions and quinoa; to green foods like parsley, turnip greens, lettuces and cabbage; and the list goes on.

Tea

The single largest source of flavonoid intake among Americans is via brewed black tea, according to both World's Healthiest Foods and the USDA's own research. If you do the math based on the USDA's numbers, (predominantly black) tea comprises 75% of all flavonoid intake among Americans. Tea's key flavonoids are called catechins, which are by far of greatest nutritional value in (high-quality) Japanese matcha. Matcha sellers will tell you that their product has shown to have 137x the EGCG (epigallocatechin) content (EGCG is considered the key health-promoting flavonoid in tea) as that of regular green tea. That comparison came from the University of Colorado, comparing matcha to Starbucks' Tazo tea; The reality is that matcha has approximately three times the EGCG content of regular green tea. Black tea, and every other source of catechins, drops off precipitously from there. According to UC Davis' research, 'regular' green tea has on average 5x the EGCG content of black tea, 4x the epicatechin content, and 2x the catechin content - all 3 flavonoids that create its value. So drink green tea in place of black tea, and seek out high-quality matcha if you can afford it; quality matcha is expensive, though it carries many other health benefits, as we reviewed at the very bottom of last week's post. A word of caution: like anything, the quality of matcha varies greatly. That shot in your Starbucks latte may come from a cheap producer in China, and as such the health boost you seek from it may not bear out. This web link provides some good rules of thumb when choosing matcha. 

Spices

But when it comes to antioxidant and poly-phenolic food, tea in general ranks far lower than many other foods, and as such should only be thought of as part of a healthy diet. The European Journal of Clinical Nutrition (EJCN) lists here the 100 foods highest in polyphenols. Tea of any kind hovers around the #50 mark. The same chart also lists, by number, the foods highest in antioxidant activity. Interestingly, dried spices - led by the #1 antioxidant and #1 poly-phenolic food - cloves - are major contributors to both. In fact, cloves, peppermint, star anise, oregano, celery seed, sage, rosemary, spearmint and thyme all make the top 15 polyphenols on their list, in order. We, as do many health experts, encourage the use of spices in your meal preparation, from oregano in your pasta sauce to cinnamon on your morning blueberries, to curries in your cooked vegetable dishes. Last week we shared a quirky video by Dr. Michael Greger - a bit of a media star insofar as antioxidant health. We'll include it again here, because he shows how easy it is to up your antioxidant content with things you already eat. As the world's greatest antioxidant, cloves can be added to soups, teas, ciders or desserts; while the world's greatest anti-inflammatory, turmeric, can easily be incorporated into a variety of cooked meals. We often think of dried foods as being less 'live' or 'fresh', and therefore of lesser value. But teas and spices - essentially desiccated and often pulverized plants - often offer concentrated forms of these key nutrients. In fact, table 5 on the USDA's flavonoid intake chart here shows that dried parsley contains sixty times the density of flavones over raw parsley. So spice it up!

Berries

That's not to ignore fresh produce. Five berries - chokeberries, elderberries, 2 types of blueberry and black currants - all make EJCN's 'top 20' polyphenolic foods list. Unlike the catechins in brewed tea, flavonoids are especially delicate with regard to heat, and thus should be consumed raw, according to WHFoods. Blueberries are the largest source of anthocyanins (the blue- and purple-granting flavonoid in berries, purple carrots and purple corn, to name three) consumed by the American public. Blueberries are of particular interest not just because people already consume them, or because they're readily available everywhere, but because beyond the anthocyanins, blueberries contain fifteen distinct antioxidant phytonutrients, making them a 'whole body' antioxidant. WHFoods goes into detail here about blueberries benefit to your cardiovascular system, cognition, blood sugar, eyes, and of course, cancer. NCBI conducted a study testing the effect freezing berries (raspberries, in this case) has on their antioxidant phytochemicals. This is important, because frozen berries, which are cheaper and widely available in supermarket freezers, are often picked at peak harvest, then flash frozen, while fresh berries are often picked pre-peak, to improve their resistance to being pulverized in the long journey from field to supermarket. NCBI found that freezing had no effect on the overall antioxidant capacity of fruits. Buying frozen fruit has the added benefit of longevity. Fresh berries must be consumed within days of purchase before becoming mealy; whereas frozen fruit is easy enough to throw into smoothies - something I do daily. In either form, berries are a great form of antioxidant, along with other vitamins, a few minerals, and dietary fiber. Trailing the 'super-berries' but also making the top 50 on EJCN's list were plums, cherries, blackberries, strawberries, raspberries (the lowest fruit in sugar), prunes, black grapes and apples - in that order.

Other polyphenols worth mention? The sub-classes lignans and isoflavones both affect our hormonal health systems. Lignans, which are nearly unique to flaxseeds, help regulate hormone levels, having been shown to help menopausal symptoms in women. For men, they have been shown to lower DHT levels, improving prostate health. 

Isoflavones, soy, phytoestrogen and endochrine disruption

This is a MAJOR area of concern. The polyphenol category of isoflavones is most readily found, and concentrated, in soybeans, which have been touted by pseudo-studies to hinder cancer cell growth by mimicking estrogen, reputedly lowering risk of breast cancer in women and again improving prostate health for men. This is due to the very real fact that they are phytoestrogens - i.e. plant-based estrogens, which also makes them endochrine disruptors. Endochrine disruptors are chemicals that, at certain doses, interfere with the hormone (endochrine) systems of animals and humans. This is of great concern because of the ever-increasing production of soy products in the US.

Soy production is second only to corn in the United States, comprising 8% of all US farmland - or 3 billion bushels - which is 35% of all worldwide production. Soy is consumed in many forms: infant formula; dairy alternatives like soy milk, soy spreads and soy creamers; tofu; soy protein isolate (in 'health' and 'workout' drinks, energy bars and cereals); and fresh, in soybean form (edamame). There is so much soy being farmed, that - like corn - the industrial agro-giants are scrambling to 'add value' to foods by including cheap, plentiful soy. Today, 31% of Americans consume soy products once or more per week - which is a 50% increase over just five years ago. For all the documented benefits of plant protein over that from animals, which bears out in the research, increasing research into the area seems to point out a wide disparity on the purportedly beneficial link between soy intake to breast cancer. The benefit seems to differ widely according to race, with largely no benefit among studies of Caucasians, and much more consistent benefits reported in studies of Asians, who have been consuming soy for 5,000 years. NCBI goes into depth on global studies here, under bullet point 5. Worse still, as an endochrine disruptor, scientists frankly have no idea - and wildly conflicting research results - as to what the increased consumption of soy will do to our hormone (endochrine) systems. Over 35% of bottle-fed newborns receive some of their protein from soy, according to a cautionary Men's Health article here. In doses we have yet to identify, soy consumption has the ability to disrupt our hormonal balance. Just look to retired US Army Intelligence officer James Price, who upon drinking a whopping 3 quarts of soy milk a day, developed breasts, experienced major hair loss, reduced sexual desire (and abilities) and mood swings. And while James' intake is admittedly far higher than normal, he eats other foods, whereas newborns - whose futures have yet to be studied, given the relative novelty of soy today - consume 100% of their nutrients via formula. Scientists are concerned that they don't know what long-term effects on hormonal (reproductive) systems soy-rearing will have on them. At the root of the issue is the fact that we don't know the acceptable level of phytoestrogen in our diets that will not trigger endochrine havoc. What we do know is that the FDA is to 'thank' for the uptick in soy consmption, which increased dramatically when they approved a health claim linking soy consumption to a reduction in heart disease. You can see the data here

In the end, as with everything, it is a matter of threshold. We are not telling you to avoid soy. It's somewhat impractical anyhow, given its market saturation. We are cautioning against jumping on the band wagon of the latest trend, where soy is thought of as a simple switch from cow's milk. We question the value of both, and caution you to consume either in small amounts, for reasons we've explored in depth with respect to dairy, and now discussed here insofar as soy is concerned.

So what to take away from all this?

Phytonutrients abound in the plant kingdom - 64 times as common as in the animal kingdom. Phytonutrients are an invaluable source of antioxidants, which keep your cells, DNA, lipids and proteins healthy and on track. They kill cancer cells, and prevent the formation of new ones. They confer all manner of health benefits, from skin health to eye health to cardiovascular support to nutrient absorption (bio-availability) to the people who consume them. And the sheer number of phytonutrients - likely over 100,000, with more being discovered every day - makes it important to consume a broad variety of fruits and vegetables in order to capture as wide a cross-section of benefit as is practical. 'Eat your colors', as the adage goes. Phytonutrients are the reason that statement (intuitively) exists, because they are the chemicals that create the color in our foods. Humans are complex systems that science is just beginning to understand. We evolved from and with Nature, because of it, and if Nature couldn't provide us with adequate nutrition to flourish for the millennia we have roamed the Earth before taking agricultural root just 10,000 years ago, we would simply not exist.

I created this website because we no longer produce our own foods, and now rely on companies with shareholders, profit-centered motivation, sophisticated marketing budgets and back-pocket politicians who create legal policy around issues of food production and consumption. In this context, most of us really don't understand food anymore, or exert much control over our intake of it, in the face of the ubiquity of unhealthy choices. It is therefore extremely important that we understand the nutritional profile of whole, plant-based foods as best as we can - foods that feed from the same root nutrients that we do, against the context of manufactured, industrial food-like products that isolate components of foods, alter and recombine them radically, and tell us they are as healthy as - or healthier than - the things that Nature grows. If there's a take-away from this week's post, it is that Nature - of which we are a constituent part - is holistic, while science and commerce are decidedly compartmentalized. And we are gambling with our own - and our families' - health.

So drink green tea - matcha if you can afford it; eat your colors - the whole rainbow of fruits and vegetables; include spices in your food preparation - they're cheap, long-lasting and phytonutrient-dense; base your diet on plant-based foods (that said, eat wild Alaskan salmon at least once weekly); avoid packaged foods that take a Frankensteinian approach to nutrition; avoid over-relying on any one category of food, since doing so can throw your system's balance off - like that of soy; and follow the sun, like the plants - not the balance sheet, like the industry.

Week 12: Greens - Everything you don't know

Our bodies are our gardens - our wills are our gardeners.

The author of this statement - none other than William Shakespeare - was one of the world's greatest stewards of language and western culture. While certainly not known as a nutritionist, he has nonetheless created two powerful metaphors in a single sentence, linking us decisively to the Nature from which we were created at the same time as admonishing us that our health is determined by how well we honor that relationship.

When we think of 'greens', most of us think of listless leaves of a vague sickly hue that taste like cardboard and are as exciting as the slow-moving herbivores who eat them, like rabbits, cows, goats and manatees. By contrast, it is the carnivores that we find most potent: lions, crocodiles, wolves and sharks, to name a few. After all, these are the flesh-devouring animals who hunt, kill and dominate the animal kingdom - and to whose 'winningness' we aspire, whether tackling a spreadsheet, kicking a ball through posts or watching an actor avenge someone's honor, guns blazing. 

In short, few of us aspire to the role of the quiet gardener, preferring instead the (d)elusive dream of the triumphant gladiator. Except that in the world of nutrition, this basic misconception about fortitude can be quite literally deadly. We have posted here week after week about ever-increasing rates of obesity, diabetes, heart disease and cancer, all of which are caused, improved or exacerbated - in large part - by our modern, industrial, western diet. In Week 2 we dipped our toe into the murky waters of the food industry, using the heavily misleading, industry-friendly food pyramid to help you separate business enterprise from truth. Week 3 provided an overview of our modern diet and its relationship to disease; Week 4 parsed food words, focusing on those which are actually healthy from those which are designed to sound healthy but in truth are not. In Week 5 we explained the dangers of dieting. In Week 7 we 'saw the enemy', and it was us, due to our ever-decreasing expenditure on food. In Week 8, we addressed diet's relationship to cancer directly. And we will continue to explore the relationship of diet to health until we have exhausted every angle of this extremely complex - and incredibly contentious - subject. 

This week, we aim to get back to foundations. In the case of human diet, from our earliest days as foragers, that foundation was - and should ever be - that which blankets the Earth's surface more than any other substance: plants; and in particular, green, leafy plants.

Part of the problem is our narrow definition of the word. 'Greens' - which are not a food group, or even a color, so much as a visual categorization of leafy vegetables - are more varied than any other food group, in terms of composition, flavor and nutritional value. In fact, 'greens' - or leaf vegetables - are the single most varied and plentiful food source on Earth. This Wikipedia listing alone tabulates over 400 edible leaf vegetables, many of which are neither leafy nor green, like Brussels Sprouts (spheroid), Cauliflower (white) and Radicchio (red-purple), to name just three. And while you cannot find all 400 of them easily in the US, dozens of the healthiest among them are available at every supermarket, every farmer's market and every specialty storeYou simply need to understand what to buy, and why. And once you've mastered the basics, you can branch out to more exotic flora, where things get really interesting, as we will discuss below.

The ABCs of Greens

  • Let's start with the (near) obvious. Green leafy vegetables are full of vitamins, which maintain healthy cell tissue and organs, and minerals, which fuel the bio-chemical processes of metabolism. Spinach, kale, Swiss chard and collard greens alone each provide the body with over 20 of these key nutrients, with spinach topping the list. Ounce for ounce, no foods are denser or broader than greens in terms of what the body needs to function properly. But you knew this already, which is why your wise parents always nagged you to eat them.
  • Less obvious, and worth an in-depth explanation, green leafy vegetables are full of antioxidants that - as put beautifully by Sophia Breene in this article - are not so much a substance as a behavior. Perhaps unbeknownst to you, our bodies' cells need an even numbers of electrons in order to be considered stable (inert). When they don't, they behave erratically and steal electrons from adjacent cells, which in turn become unstable and rob yet others, causing a chain reaction of 'free radicals' (cells with unpaired electrons) that quickly cause cellular damage called oxidative stress. Oxidative stress degrades and 'ages' your body's proteins, DNA and lipids, which have been shown in studies to catalyze or exacerbate most modern diseases, including cancer, Alzheimer's, heart disease, stroke, Parkinson's, fibromyalgia, diabetes, aging, cognitive decline, and macular degeneration. Vitamins C and E are the body's chief source of water-soluble and fat-soluble antioxidants, respectively. Antioxidants are self-stable molecules that roam the body, donating electrons to unstable molecules without impact to themselves, thereby ending the free radical chain reaction. Broccoli, Brussels sprouts, cauliflower, kale, cabbage, bok choy, parsley and turnip greens - in descending order - all provide between 135% and 50% of your DRI (daily recommended intake) of vitamin C, while beet- mustard- and collard greens follow close behind. Only bell peppers, papayas and guavas rank higher. In terms of vitamin E, spinach, Swiss chard, turnip- beet- and mustard greens all provide, in descending order, between 25% and 17% of your DRI - second only to almonds and sunflower seeds. In short, greens are important, commonly available antioxidants that are easy to incorporate into your daily intake.
  • Green leafy vegetables are anti-inflammatory. If antioxidants roam the body preventing cellular damage, then anti-inflammatories keep your body's own immune system from overtaxing itself, due to chronic inflammation. 'Regular' inflammation is the cornerstone of the body's own defense system, which targets infected sites and sends additional nourishment and immune activity to its rescue. Think of inflammation as a SWAT team. But chronic inflammation is different. All soldiers need rest. If you keep pushing them without down time, eventually they collapse, and things break down. In the case of your body, chronic inflammation is not a localized immune response: it is instead an environment of ill-health in which the body is denied its 'pause', and is therefore in a constant state of aroused defense. Stress and lack of exercise are part of the cause; but diet is a major contributor, as well. Chronic inflammation has been directly linked to many cancers, Alzheimer's and heart disease. As we reported in the second part of Week 3's post, our ancestral, pre-modern diet comprised a balance of anti-inflammatory omega-3 fatty acids and pro-inflammatory omega-6's - a 1:1 ratio. Today, the typical western diet is tremendously pro-inflammatory, skewing the ratio to a staggering 25:1 in favor of omega-6's. This difference is the primary cause of the spike in chronic inflammation over the past half-century and the ensuing raft of modern diseases. The food culprits that cause unchecked inflammation? In descending order, they are: sugars, common cooking oils (in commercially prepared foods), trans fats (same), dairy, red meat, feedlot-raised meat (red or otherwise), refined grains (anything flour-based) and artificial food additives (in nearly every processed food). You can read more detail about each one here. And green leafy vegetables? They are the base of the anti-inflammatory food pyramid, as beautifully illustrated by wellness guru Dr. Andrew Weil, here. While nuts (esp. walnuts) and cold water fish are omega-3 royalty, green leafy vegetables are no slouches, with Brussels sprouts, cauliflower, broccoli, collard greens, spinach and kale offering healthy omega-3's in addition to everything else they do.  

What is in a name?

Unfortunately, our problems extend beyond the simple choice of plant foods over industrial products. Even those among us who want to eat healthy food, and who do their best to reach for a salad over a burger, have large knowledge gaps when it comes to the plant world, and so parsing what sounds good (like 'salad') vs. what is good (the actual ingredients behind the name 'salad') is a challenge.

Which brings us to the inexplicable, and unfortunate, story of Iceberg lettuce. Iceberg is the most common leafy green (white, really) consumed in the United States, with each of us eating on average 17 lbs. of it every year, according to Jill Nussinow, a California-based culinary educator and author. It's likely the root cause of many people's perception of salad as being as exhilarating as a manatee. The problem with Iceberg lettuce, which is the foundation of the nutritional disaster called a Caesar's salad, is that it is mostly water, and almost devoid of nutrition. (We'll leave aside the dressing, which is an effective delivery method for adding empty calories, fat, sodium and cholesterol to your diet; not to mention those croutons...) In fact, the difference in nutritional value is so varied among 'greens', that it's worth taking three commonly eaten leaves and comparing them here for you, in detail. The chart below shows the DRI (daily recommended intake) of each vitamin, mineral and other key nutrients present in all three. Percentages show the amount of the average person's DRI that a single 100g serving of leaves provides. The last column shows the number of times higher in each nutrient the spinach is over the iceberg (with common romaine consistently in between the two). The discrepancy between leaves is staggering:

Copyright FFFL

Copyright FFFL

At the root of it (no pun intended), and in every single measurable nutrientspinach contains roughly 2-45 times the concentration of 21 different essential nutrients as iceberg lettuce. You can find a fully detailed comparison here - one you can also customize to compare foods against one another, beyond the greens we have contrasted.

It gets better. The nutrient profile of the plant world's 'it' girl - kale - reaches close (but not quite) to that of spinach; as does nearly unknown but omnipresent Swiss chard; ditto mustard greenscollard greensbok choy and broccoli - all leafy greens and all among the healthiest foods on the planet. Individually, they deliver significant amounts of roughly 40 essential vitamins, minerals and amino acids. The best part? There's so much choice when it comes to vegetables in general, and leafy greens in particular (think thyme, sage, rosemary, mint, parsley, cilantro, basil and oregano, which are common flavor bombs in tiny doses; or perilla, sorrel, mustard greens, mizuna, radicchio and arugula, which are far less common, but widely available and pack strong and highly distinctive flavors as additions to - or substitutions for - other everyday salad leaves), that there's really no excuse to think of greens as rabbit food.

Salads - the way we should think of them

Leaves are simply a base for other ingredients - and should be thought of as such, much the way that the Italians consider pasta to be a vehicle for delivering what's on it. As I remember fondly from my year-plus spent living there, they eat pasta every day, and often in multiple meals each day, without getting sick of it. Why? It's what's on it that counts, and provides the flavor. Unlike pasta, the flavor variation in greens is infinitely broader, and so the richness of variety allows for less repetition, if you pay attention and vary your greens. 

In the world of food, salad as a category has morphed as much as the the martini has in the drinking world - where the term now applies to a broad set of vaguely related concoctions as unlimited as the minds that think them up. Salads these days - to the benefit of your well-being - can include aspects from every food group, from vegetables, fruits, meats, dairy, grains and nuts. Thus you can dress the 'plate' (i.e.: greens) however you want, and feel extremely good about feeding your body well. Beyond the near-infinite choice of vegetables that can and should make up a large proportion of your meal - not to mention some fruits that pair well (think spinach and dried cranberries or arugula and pear) - there are rich, flavorful and healthy unsaturated fats like those in avocados, olives, and heart-healthy oils like olive, coconut and walnut; proteins like nuts, seeds, beans and eggs (all of which also deliver excellent doses of heart-healthy fats and minerals); and animal products such as cheese (though this should be used sparingly and in its raw state, if possible, as we detail in the second half of Week 4's post), cold water fish (like wild Alaskan salmon), and the occasional piece of lean, pasture-raised beef or chicken (Week 4 covers this at length). In the case of salad, leaves should always comprise the lion's share of the bulk, followed in descending order by other vegetables; fruits; plant proteins; plant fats; and finally animal products - as represented in illustrations like Dr. Weil's pyramid. If your 'salad' looks like a grass-fed steak with a few leaves underneath it, it's not a salad.

If you lack the creative impulse to figure out what works, just look to indigenous cultures who have been combining ingredients for health and for taste since before agri-businesses existed, like these examples, to name just a few: French salade niçoise (greens; tuna; olives; haricots; potato; egg; anchovy); classic Greek salad (greens; cucumber; tomato; feta); Lebanese tabouleh (tomato; parsley; mint; bulgur; onion); Italian caprese (tomato; basil; mozzarella); Vietnamese 'Thanksgiving' salad (fennel; cabbage; cashew); and Mexican black bean salad (beans; peppers; tomatoes; corn; cilantro; onion; lime). Just make sure greens are the literal base of everything you do - even if the traditional salads listed above don't call for them. They'll combine well with any classic recipe, and will add tons of heart-healthy nutrition to your diet. 

To paraphrase the duc d'Uzès during the 14th C accession of Charles VII, 'Salad is dead! Long live salad!

Spices and herbs

It's not just fresh leafy greens that provide your antioxidant needs. Sometimes, it's as simple as sprinkling some dried oregano or marjoram on your pasta. One pinch of oregano doubles the antioxidant value of a bowl of whole wheat pasta with a marinara sauce, according to Dr. Michael Greger, physician, author and Stephen Colbert / Dr. Oz guest. In his eccentric video, he walks you through visual aids that show how you can add nutrition value with dried spices and herbs. Basil, parsley, oregano, thyme and rosemary are all 'leafy greens' that one can easily store dry, for months on end, and which you can simply sprinkle onto the foods you already eat to up their antioxidant value dramatically, which - as we've seen - has a material effect on modern diseases like cancer, diabetes and heart disease. 

Let's review what we've learned so far:

  1.  All leafy greens are not created equal. Some of the healthiest foods on Earth include spinach, kale, Swiss chard, bok choy, tatsoi (chinese spinach), mustard greens, collard greens, arugula, cabbage, watercress and turnip greens. Iceberg and other red-or-green lettuces, while not devoid of nutrition, should be substituted where possible with those listed above, since the difference is substantial.
  2. Some leafy greens are neither green nor leafy. They are, however, as (or nearly as) nutritious as their forebears, especially the cruciferous vegetable family, which includes broccoli, cauliflower, romanesco (a delightfully tasty 'fractal' vegetable), Brussels sprouts, cabbage, kohlrabi, radish and turnips. Bonus: crucifers, which also includes kale and bok choy, are the food world's champion cancer-fighters. See the second half of Week 8's post for more detail on glucosinates and indoles).
  3. Leafy greens should be thought of as a base for your culinary creativity. Vary the ingredients. Add vegetables; fats; proteins; dairy; grains... these things are limited only by your imagination - or your ability to conduct Google searches on sites like EpicuriousGourmetBon Appétit and AllRecipes
  4. Leafy greens are incredibly flavorful, and varied. Venture beyond the lettuce aisle and pick up one of the leaves listed above; or go to a specialty market in Chinatown, or where the ethnic minorities in your area shop: the Indians, Vietnamese or Japanese, to name three cuisines that heavily feature leafy greens that are as flavorful as they are exotic and unexpected.
  5. Spice it up. Spices are dried leaves. They're used to make tea; add flavor to foods; and are nutritious ways of including nutrients in your diet. The Indians - who use spices of greater depth and breadth than any other culture - are not just predominantly vegetarian, but understand spices' healing properties, like turmeric, which is one of the most powerful anti-inflammatories in Nature. It has been used for centuries by the Chinese and Indians - and increasingly modern medicine - to treat everything from IBSrheumatoid arthritisalzheimer's and cystic fibrosis, and has been shown in numerous studies to inhibit the growth of cancer cells significantly - to name just one of countless spices with real, measurable medicinal value.

Now that we've mastered the basics, let's move on to some lesser-known fare.

Sprouts - a Master's degree in 'greens'

The young of every living creature carries within its tiny package the genetic material for it to grow into maturity, whether in animal or plant form. The sheer density of healing, growth-promoting elements they contain makes them dwarf their adult counterparts' healthfulness because they represent a life form in its most vital state. In humans, children heal more quickly than adults; their skin is more supple; their systems are more robust; and the number of synaptic connections in their brains - and the speed at which they learn - run circles around those of grown-ups. The same is true in the plant world. According to nutrition expert Dr. Mercola, young plant foods - called sprouts or shoots, and commonly referred to as 'raw' or 'living foods' - contain up to 100 times as many enzymes as adult plants, and up to 30 times the density of vitamins and essential fatty acids. Let's repeat that: up to 100 times the enzymes and 30 times the vitamins and fatty acids as the world's otherwise healthiest foods. This is why they are often referred to as miracle foods. In addition, according to Dr. Mercola, the nutrients in sprouts are often more bioavailable than those in adult plants, which means the body can more readily absorb them, instead of simply passing them through your system, unused. 

Better still? A wide variety of them are easy to find in both farmer's markets and specialty markets, including sprouts from broccoli, sunflower, pea shoots, alfalfa, clover, radish, lentils, wheatgrass and mung beans. On a walk through New York's Union Square last Saturday, I counted over a dozen purveyors of sprouts, alongside their usual greenmarket fare.

Best of all? Though this requires a commitment, and/or if you have trouble finding them where you live, it's extremely easy to grow them yourself, and to therefore not just save tons of money (they're pennies on the dollar) but to eat them within minutes of harvesting, regularly, when nutrient levels are highest. Here are links to growing many of the sprouts listed above, complete with videos: sunflower; broccoli; wheatgrass; mung beans and lentils; radish; pea shoots.

Matcha - Doctorate-level 'greens'

We will leave the subject of green, leafy nutrition with the story of matcha - my own newest discovery. While I'm decidedly late to the party, Japanese Zen buddhist monks and Shogun warriors have been sipping this beverage since the 12th Century - when they perfected a process invented by the Chinese some 300 years earlier. The monk Eisai - the man responsible for bringing it to Japan - referred to matcha as 'The Elixir of the Immortals', and its drinkers swore by its sustained energy and mental clarity. 

Under the lens of modern science, the traditional endorsement not only holds up but becomes even more interesting. As measured on the Oxygen Radical Absorbance Capacity (ORAC) scale - which was developed the the National Institute of Aging (NIA) and venerable National Institutes of Health (NIH) - on a per-gram basis, matcha is one of the greatest antioxidants on the planet, matched or exceeded only by turmeric, dried oregano, sorghum, cinnamon, sumac and cloves - the last being the world's reigning champion. Moreover, the form of matcha's antioxidants - EGCGs, a form of the phenol catechin - have been shown to aid in the management or risk and severity reduction of both HIV-1 and cancer - the latter because EGCGs are chemopreventive. None other than the National Center for Biotechnology Information (NCBI), one of the nation's decisive authorities on molecular biology, lists EGCGs present in green tea as playing a potent role in cancer cell death. You can read their study here. And keep in mind that matcha has 30% more catechins (EGCGs) than regular green tea, making them even more effective in managing cancer cells.   

In addition to its antioxidant and anti-cancer properties - and the fact that it is a good source of vitamins A, B-complex, C, E and K - matcha's particular caffeine, called theophylline, has been shown to release more slowly into the body than that of coffee, thereby sustaining energy levels longer without the spikes. Better still, L-theanine, an amino acid unique to matcha, is known to boost alpha waves in the brain, creating a paradoxically calm alertness. It is this alertness that attracted the monks to it all those centuries ago. I can attest to a (very uncharacteristic) calm that follows my own morning cupful, while those who know me well understand just how remarkable an outcome that is. Let's just say I've been encouraged to keep it up...

So to revisit what we've discussed just one more time:

  • Greens are the most varied food source in the world, with over 400 types, many widely available
  • Greens are calorie for calorie the most nutritious foods, with a number of standouts, listed above
  • The flavor of greens is far more complex than most people realize; the key is to experiment
  • We must select our greens carefully, since nutritional profiles vary widely, and avoid 'empty' ones
  • We should think of greens as a 'base' for other foods, the way Italians use pasta
  • To wit: greens don't replace other foods; they complement them and are essential to optimal health
  • Dried greens - aka spices and herbs - are nutritional powerhouses that are easy to incorporate
  • Sprouts are the plant world's champions, delivering unmatched nutrition
  • Matcha is a great substitute for coffee, and offers many of the benefits of 'other greens'

I'll leave you with some of my own favorite greens, in no particular order, with hyperlinks given for informational purposes only (FFFL does not endorse or have any commercial relationships with anyone):

  1. Breakaway matcha: the quality of matcha is key to its efficacy
  2. Red-veined sorrel: a lemon-flavored herb-leaf that makes a fantastic addition to any salad
  3. Shiso (aka perilla): a minty, pungent, grassy herb as an accent to fish (used in Korea, Japan, Vietnam)
  4. Sunflower sprouts: one of the tastiest sprouts, with a decidedly nutty flavor; add it to salads
  5. Radish (aka Daikon) sprouts: for a wonderful little 'tang' in your salad
  6. Romanesco: the most beautiful - and tastiest - among its siblings broccoli and cauliflower (I simply steam it for 4-5 minutes and drizzle with a high-quality olive oil and sea salt (fleur de sel)
  7. Mustard Greens: want proof that greens can knock you off your feet? Try these amazing decongestants in your salad. Just don't say I didn't warn you. Or try this recipe.
  8. Spinach: okay, so it's obvious, but it's the #1 world's healthiest food, surprisingly tasty and neutral, and as such able to be blended, eaten raw or cooked and combined with nearly anything. But skip the supermarket greens and get them from the farmer's market. They will not only be far tastier and stiffer (meaning less decomposed), but as such will last twice as long before beginning to wilt 
  9. Pea shoots: Peas are one of the most nutritious foods on the planet. And the sprouts? 7x the vitamin C content of blueberries; 8x the folic acid of bean sprouts; and 4x the vitamin A of tomatoes
  10. Brussels sprouts: when I make them, they always disappear like popcorn. Half-fill a gallon-sized Ziploc with halved sprouts; add 3 tbsp. olive oil and 1 pinch sea salt; inflate/close the bag and shake vigorously until mixed. Place in a single layer in a 425F oven on a baking sheet, and flip each one every ten minutes; repeat the flipping until they're charred - usually 3-4 total times. Your friends and body will thank you.

 

Week 10: Real food or Supplements - Fact vs. Fiction

"We cannot read... a verse without making a face at it, as if every word were a pill to swallow: he gives us many times a hard nut to break our teeth, without a kernal <sic> for our pains."

The expression - 'a pill to swallow', to which the adjectives 'bitter' or 'hard' were added in the following centuries by others - was first published in 1668 by the English poet John Dryden, in the sentence above. He was aiming his critique at fellow poet John Cleveland, using the pill as a metaphor for lack of substance, backed up by two food enforcers, one good and one bad. His words could just as easily be aimed at the modern supplement business in its relationship to 'real foods' - an industry which, poetry aside, relies almost solely on words to part us with our hard-earned dollars, with little science to back it up, little oversight to ensure its safety and honesty, and much (little-known) science to reveal its ineffectiveness in ensuring good health among the general pill-taking populace.

In plain 20th Century english, the vast majority of supplements don't work. Worse still, some deliver concentrated amounts of single nutrients that can actually harm us. The trick, as with everything health related in post-industrial America, is parsing science from market-speak. This week's post will share what we know about supplements, and how best to think of them as partners in health.

But first: foods. Real food can, should and must be thought of as your de facto source of complete and balanced nutrition. Eat real foods, and process them minimally. You know the rules, and have doubtlessly heard them ad nauseum, from me and from others, but they are worth repeating here, with brief explanation as to why you should consume them, and how:

  1. On a daily basis, eat a highly varied diet of vegetables, fruits, whole grains, beans, nuts, seeds and oils - in that order (meaning the most of the first and the least of the last) - to ensure you receive adequate levels of plant-based vitamins, minerals, proteins, fats and carbohydrates. Why daily? A majority of vitamins are water-soluble and thus must be consumed daily in order for your body to get what it needs to thrive, since what is not immediately absorbed is flushed out. Dark leafy greens are the world's densest and broadest sources of these. A complete list of the 81 foods we consider healthiest - with a complete list of every nutrient each contains, and in what amount - is the basis of Week 9's post, here. Further, both proteins (in the form of amino acids), and carbohydrates (in the form of glycogen) are two essential nutrients whose ability to be stored by the body is limited. Similarly, minerals are used by the body for countless processes. Think of them as workers keeping a machine's parts moving - feeding adequate amounts of themselves to blood cells, tissue and bones as necessary, given the body's specific demands at any given time. Because, like other nutrients, minerals are used up, often to depletion, they must be replenished daily. Why in that order? First, the body uses carbohydrates as its primary source of energy, such as those in vegetables, fruits and grains. Second, vegetables and fruits comprise the primary dietary source of vitamins and minerals. Third, we require lesser food quantities to ensure adequate muscle-building, tissue- and organ-regulating protein; and lastly, because we need the least volumetric quantities of heart-healthy fats to ensure nutrient absorption and adequate lubrication of the body's internal tissue.
  2. Every 2-3 days, supplement the foods above with healthy fish such as wild Alaskan Salmon or Pacific Sardines, to name two of the healthiest (and least polluted) sources of vitamins B12, D, choline, protein and good fats, because these are difficult (protein/good fats) or impossible (B12/D/Choline) to find in plant-based foods. Why every other day? The body has shown it can store vitamin D for up to six months (in adipose tissue - aka fat) and store vitamin B12 for years (in the liver). Ditto good fats, which like any form of fat, the body has an unlimited ability to store. Therefore, these nutrients needn't be consumed daily, but since they, like any other fuel source, are depleted by the body as needed, they must be consumed regularly.
  3. If for whatever reason you really don't like fish, or just find yourself in a place where it's unavailable, then supplement your plant-based diet with by-products and meats from pastured/pasture-raised land animals, like eggs (with the yolk, which contains most of its nutrients), pure yogurts (with minimal to no added sugars - yogurt naturally has fewer than 10g of sugar per serving), cheeses (raw and unpasteurized if available in your state) - and finally animals, if you must, on occasion, for adequate intake of vitamin B12, choline and protein, although the latter two can be found in equal or greater doses in beans, shrimp and scallops - all of which are healthier. Why pastured or pasture-raised? As we saw in depth in Week 4's post, this is the only term that guarantees the animal ate its natural diet in a natural setting, which has a very real impact on the animal's own health on a molecular level. Pastured animals - and their by-products - have far higher densities of the nutrients we rely on them to provide, over conventionally raised or even organic fare. Ironically, this is the only term that is not governed or defined by the US government. As such, grass-roots farmers who have bucked the trend toward (heavily subsidized and more heavily under-regulated) industrial farming have come up with this term as a fancy way of saying 'the way animals were before we domesticated them'.

Now, for the supplements. An increasing and unequivocally consistent body of science is accumulating, and like John Dryden's critique of his nemesis, it does not favor the pill.

Why is 'real food' better than supplements? There are several reasons that we will explore here: 

  1. Supplements are not regulated. The FDA inspects just 1% of the 65,000 supplements on the market, according to Todd Runestad, editor of the trade publication Functional Ingredients and the Engredea Reports. Those of us in New York will remember the recent scandal exposed earlier this year, when the State Attorney General examined supplements sold at the country's largest retailers, like Walmart, Target, and GNC, and found that they contained little to none of the ingredient they peddled, and often contained products that provoked allergies or other health risks instead. A great New York Times article from February 2015 is linked here. In just one example, Walmart's ginkgo balboa contained no ginkgo balboa, and was instead comprised of powdered radish, houseplants and wheat - in spite of claiming it was gluten-free. Taking it thus poses a real health risk to people with Celiac disease; and offers zero benefit to anyone else. According to the article, it found many supplements in GNC that contained legumes - a class of plants that poses a hazard to allergy sufferers, like those who are allergic to peanuts.  In fact, according to healthline.com, 5% of all US grocery expenditure is on supplements, from which grocers make 10x the profit as on real food. James Johnson of the Nutrition Business Journal says that supplements keep many small grocers in business. The food business trend both here and among food product makers is consistent: the more unnatural the product is, the greater its profit margins for not just shareholders but for the middleman and retailer, as well. In market-speak, this is called "value-added", and it applies broadly, whether to 5 cents-worth of high-fructose corn syrup being resold as a 99 cent soda, or to 3 cents-worth of mulched up houseplants being resold as a $9.99 container of ginkgo bilboa. Thus commerce is almost always stacked against nutrition when it comes to feeding you and your family. The fact is that whatever is mulched up or concocted in the laboratory and stuffed into a pill casing on the factory floor before being shipped to a retail shelf where it sits, at great length, until purchased, is about as close to natural as an aging hollywood star. Natural once, perhaps, but at this stage unrecognizable.
  2. Natural nutrients, whether vitamins, minerals or herbs, are delivered in their natural plant form with a variety of co-dependent chemical ingredients that are typically isolated in supplement form, thereby reducing or eliminating its efficacy. In one example, feverfew is an herb used historically to treat migraines. The plant consists of dozens of chemical components, of which one - pathenolide, is assumed by pill-makers to be the relieving agent. Assumed. In fact, product makers and independent testers cannot demonstrate feverfew supplements' effectiveness - in spite of the fact that it is on sale on shelves and its makers make claims, relying on the common lore surrounding the root plant to part consumers with their dollars. The fact is that one could make a similar claim for the overwhelming majority of supplements on shelves. In general, they are ineffective, deceitful, or both.
  3. Related to the point above, when we eat a food, we are receiving far more than the benefit of one ingredient/nutrient therein. Natural foods are complex systems that deliver a multiplicity of vitamins, minerals, proteins, carbohydrates and fats whose interaction is often critical to their food value to humans, including our bodies' success in absorbing them. Furthermore, real foods deliver thousands of micro-nutrients whose names that we as consumers may not know but whose presence supports the body's health, like phytonutrients, carotenoids, retinoids, phytoestrogens, and polyphenols, to name a few such categories. In addition, real plant-based foods are full of fiber, which is critical to the health of our digestive system and its breakdown, expulsion and delivery of nutrients to our body's systems. Thus single-sourcing or targeting a laboratory supplement as the source of nutrition is not only ineffective, it denies the body the foundational value of the complex foods from which they are distilled.

So while we cannot think of pills as replacements for food, we can think of them in two ways that are truly helpful in terms of human diet:

  1.  To fill in the nutrition gaps left by an inadequate or incomplete dietary intake of real foods. In this sense, supplements in some forms may provide us with a stopgap, such as that of those of animal-only nutrients B12 and choline for those with a vegan diet; vitamin D3 for people in northern climates who don't get enough exposure to D3-synthesizing sunlight; or Folic Acid in women who are pregnant and want to guard against neural tube defects, to name just three examples. Again, it's important to re-state here that the naturally-occurring form of any ingredient/nutrient is the best form, and supplements should be thought of as such - supplementing your diet in the case that a gap exists. Even there, some are effective - and backed by science - while others aren't. A phenomenal and beautiful interactive graphic that demonstrates which supplements science supports can be found here. In it, just four of the myriad available supplements are strongly supported by science: garlic, niacin (B3), probiotics and zinc. Yet here again, all four are widely available in 'real' form: garlic as such, niacin in turkey, chicken, beef, salmon, sardines and lamb - and in lesser concentration in plant-based foods like sweet potatoes, peanuts and brown rice; probiotic bacteria in fermented foods like yogurt, kefir, kimchi, kombucha, pickles and sauerkraut; and zinc in beef, lamb, beans of all kind, scallops, shrimp and turkey. So it's frankly easy, in a normal healthy diet, to glean all four of them in forms that provide great culinary enjoyment, to boot.
  2. To provide additional support for people with specific medical or health conditions for which targeted dietary supplements can act as palliatives or prophylactics. Let's look again at niacin (vitamin B3). A 2010 review by the NCBI at the National Institutes of Health found that niacin supplements resulted in significant reductions in the rate of strokes or heart attacks for those who suffered from heart disease - yet in spite of this, only a minor drop in rates of mortality from same. Does that make it worth taking a niacin supplement? Absolutely. Here again, however, niacin is widely available in 'real foods', as we've seen, and so an informed sufferer of heart disease has many ways to ensure adequate niacin intake, if he/she were to know how to source it, as in our Week 9 food list. A second - perhaps better - example can be made of the joint pain medications glucosamine and chondroitin. Aimed at sufferers of joint pain - especially those caused by osteoarthritis (OA) - the NCBI at NIH reports 'statistically significant improvements in joint space loss, pain and and function here. As a 46-year old adult in excellent physical shape and with a diet better than that of most Americans, I have OA of the hips, and have been taking the supplement daily for nearly 10 years, following a diagnosis (a 'freak accident of DNA', in my doctor's own words) and a recommendation of urgent and immediate hip replacement, due to the fact that I had (and could see in my own x-rays) zero cartilage between my hip bones, lots of grinding, and I had been suffering increasingly until I finally went to the doctor to see what was causing it. 10 years later, I maintain a pain-free life, as long as I take the supplements, without having had the surgery. On rare occasions when I forget to (or cannot) take the pill for more than 3 days, I begin to feel dull but consistent pain, which goes away within a day of resuming my regimen. So in my personal experience, it both tangibly 'works' and is supported by science. Moreover, there are no food sources of glucosamine, which occurs naturally in the body, and in the shells of marine creatures, which make up the bulk of supplements. So here, a supplement is effective and necessary, unless you suffer from shellfish allergies.

So, let's recap the reasons supplements don't work, by and large, as a viable strategy for nutrient intake in 'normal' people - those without specific health conditions. 1. Supplements are big business: $17 billion annually, according to Dr. Joseph Mercola. He goes on to say that in spite of this, the rates of some chronic diseases have not diminished, while the rates of others continues to increase. The reason for the existence of supplements, by and large, is that supplements make their makers money. 2. Supplements ignore the fact that in naturally occurring sources, their 'key' ingredients are one among many that require interaction in order to be effective. 3. Supplements are 'single nutrient' palliatives. Real foods contain many nutrients that benefit the body broadly - not in a limited way. 4. Science does not support the vast majority of claims of efficacy. Again, take a look at the interactive graphic here to see which supplements are supported by current science, or lack thereof. The graphic is fantastic. 5. Supplements are not regulated. They often fail to include the ingredients they peddle; and often include other harmful substances as either fillers or substitutes - making them not only deceitful, but potentially (and often) harmful, as exposed by the New York State Attorney General at the outset of 2015.

Copyright FFFL

Copyright FFFL

We support your health, as we do our own. Supplements have a place in human health, but it's one that's far smaller and for far fewer people than the 1 in 5 Americans who currently rely on them to guarantee their dietary health and well-being. I take them for my hips, much as others take them for medical reasons that real food cannot help, or as a 'belt and suspenders' strategy, as in women's intake of folate while pregnant. In either case, do the research, or refer to our Week 9 post, in which we list every essential nutrient in the 81 foods we consider healthiest. These are readily available real foods that provide countless ways to eat your way to a delicious state of (largely) supplement-free health.

Week 8: Cancer and Diet - a relationship

Let food be thy medicine and medicine be thy food.

Hippocrates, the author of that statement and the sentiments behind it, was not a hippie quack, a denier of scientific progress or a fearful skeptic of doctors. He is, more than any other, the person who established medicine as a profession separate from philosophy and theology, instituting clinical practice as its methodology. Our experiences with doctors today are largely built on the foundations he laid 2,500 years ago, and he is accordingly considered the father of Western Medicine. Upon licensure, all physicians are still required to take an Oath to uphold the standards contained in a text that he wrote. According to Wikipedia, 'Hippocrates is credited with being the first person to believe that diseases were caused naturally - not because of superstition and gods.'

But just what is it in nature that causes disease?

The answer is incredibly simple. But to uncover it, to believe in that discovery, and to learn how to foster its opposite - health - is an uphill battle. First, we have lost our intuitive connection with food. If you were not born into aristocracy, then 100 years ago you were most likely a farmer, and understood plants, seasons, soil and yield. Today we understand none of it, since as we saw in Week 7's post, fewer than 1% of us still farm. Second, since industrial food conglomerates largely supply the foods that we no longer grow ourselves, their executives are the people determining how healthfully we eat, via the decisions they make and the products that emerge from those decisions. And their chief - if not singular - goal is to make money. This distinction bears little resemblance to the goal of the small farmer insofar as feeding his/her own family, where nutrition comes first. The bigger the company, the greater the influence small decisions in cutting costs have on the 'bottom line', whether in profitability to them or health to you, which are usually at opposite ends of that equation. Besides, there is so much food choice in supermarkets, gas stations and pharmacies today - to say nothing of national restaurant chains - that these companies are engaged in sales warfare, and must compete for your dollars. Overwhelmingly, this is accomplished via sophisticated marketing, through which we are invariably sold a story to lure us into brand loyalty. And this rarely has anything to do with how good something is for you. Quite the opposite: the less healthy and more engineered a product is, the more companies profit and hence the more they invest in selling it. And the strategy succeeds in large part because it's nearly impossible for us to gauge the actual healthfulness of most food products, since the long list of engineered substances they comprise are things we've never seen, smelled or touched in Nature. And so we rely on others to tell us what's good for us, and must spend our mental energies trying to divine truth from market-speak. We covered this phenomenon at length in Week 4's post: Food Words - Science or Snake OilThird, the food industry that dominates the West has so successfully taken control of the business of food via advertisements, websites, games, characters, lobbying, national policy and even Law, which are aimed collectively at creating economic health, that it is near impossible to practice healthy eating without overcoming the tidal wave of temptations that are designed to prevent most of us from doing so. It's just not good business.

To come back to that 'incredibly simple answer' to what causes disease, it's the processing of our foods. But if you've been following us closely, you already know that. We could fill multiple posts simply tabulating the specific health risks associated with each engineered food-like substance. Instead, we try to include one example each week that illustrates the point. In week 6's post, we learned that the modern process of milling wheat into flour - in which it is stripped of its bran, germ, endosperm, fiber and bulk (coarseness) - results in a 50% content loss of vitamins B1, B2, B3, B9 (folate) and E, and an equal amount of calcium, phosphorus, zinc, copper, iron, and fiber. We learned that in addition to that loss, the resulting wheat flour converts immediately into sugar once it reaches your stomach, where your pancreas starts going haywire producing insulin and spiking blood sugar levels. This week we will take it a step further, and explore the relationship between wheat and cancer.

Wheat flour is just one of many high-glycemic foods, so named because as we just mentioned, it converts quickly into sugar once ingested. A food's glycemic index is a tool for understanding how quickly and how much foods raise your blood sugar level once ingested. High glycemic foods are known to seriously increase the risk of the now-familiar triumvirate of modern disease: type 2 diabetes, heart disease, and cancer. This article by Harvard's School of Public Health provides a good overview on carbohydrates and blood sugar. Another good resource for understanding the glycemic load on common foods, posted by Harvard Medical School's Publications division, is here. In the HMS link, you'll notice that the list is overwhelmingly comprised of highly processed foods that make up 90% of our diets, according to Eric Schlosser, author of Fast Food Nation, and also covered in Week 7's post.

Why focus on wheat? Because it's one of the most consumed foods in the United States, via sandwiches, pastas, snack foods, baked goods, desserts, cereals and even salads. And so unpacking what we consume and how we consume it is of great relevance to the discussion of cancer, as we'll see in a moment. 

First, let's look at the difference in the glycemic loads of two ingredients that to the typical shopper are opposite in health promotion: those of  'white' flour and 'whole wheat' flour breads. Both rate an identical 71 on the glycemic scale's 100-point index, qualifying them as high-glycemic foods - i.e.: quick to convert into pure sugar. Yet we are ever seduced by marketing campaigns into thinking whole wheat is healthier than 'white' wheat. It is, but only if consumed in whole grain form - i.e.: not milled into flour. Once wheat of any kind is milled, as the majority of so-called whole wheat products are, there is precious little difference. They become sugar and are devoid of the key nutrients that unmilled wheat carries as a living plant. Thus we encourage you to read food labels carefully, and avoid flour-based products altogether. If it says 'flour', it's simply not good for you. This resource by the Whole Grains Council allows you to find whole grain breads in a searchable database, to find good products or see how the ones you use measure up. In general, we highly recommend replacing non-whole grains (i.e.: any flour product) with their less processed counterpart. Sprouted grains are especially valuable, since beyond comprising whole grains, the act of sprouting lowers their gluten and starch content while preserving valuable enzymes and amino acids. These are often referred to as 'live' foods, and can be found easily in national grocery chains, in addition to specialty food shops - sometimes in the freezer section. A good resource that lists and grades sprouted grain-type breads is here

So what do high-glycemic foods have to do with cancer, anyway? Everything. The sugars promote insulin resistance. Insulin resistance creates and environment that is conducive to tumor growth in your body, according to the American Institute of Cancer Research. For example, the risk of colon cancer increases by 300% in a high-glycemic diet, according to Dr. Liu and his fellow researchers at Harvard Medical School.

Which brings me to a personal story.

In the Fall of 2003, I received a call from my brother Jordan, a 38-year old Harvard-trained physician and proponent of holistic healing. Holistic healing centers on the belief that psychological health and diet are partners with Western medical science in providing long-term health. I was living in Hong Kong at the time, and he in Western Massachusetts, in no small part because of its proximity to both the Kripalu Center for Yoga and Health, where he meditated regularly, and the Kushi Institute, the American epicenter of Macrobiotics where he took most of his meals and learned all of his dietary practices. This was for two reasons: first, because of the ulcerative colitis from which he had suffered since the age of seventeen and which had wreaked havoc on his large intestine for more than half of his life; and second, because as an undergraduate student, he had taken a sabbatical from Harvard to live among a specific group of Tibetan monks who had proven through meditation to be able to exert a high degree of physiological control over their bodies. And his interest in learning from them was related to his own health challenges.

On the phone in Hong Kong, Jordan told me that his cancer had returned - for the fifth time - and that it was stage IV. Our family had lived through his first - a pineal blastoma (brain cancer) diagnosed at the age of 22 - from which he later became the disease's first-ever recorded long-term survivor. I knew about his ulcerative colitis and that it increased his risk of colon cancer, if untreated surgically. What I didn't know was that in the years between that odyssey and our phone call, he had already twice fought colon cancer; that this was his third such diagnosis; and that he had chosen to keep this information from his entire family. The reason, in part, was because he had declined surgery both times, striking a recurring bargain with his frustrated doctors: that if the cancer hadn't completely disappeared in twelve months following the diagnosis, without surgery or other Western medical intervention, he would allow the operation on his colon to take place. His plan was to heal himself through meditation and diet - and nothing else. And he knew our family would have likely pressured him emphatically to operate.

Like Hippocrates, my brother was no quack. He was a member of Mensa since the age of 10. He enjoyed our century-old high school's highest-ever grades. He went to Harvard at 17, after 11th grade, where he was elected Phi Beta Kappa and graduated Magna Cum Laude. And he finished Harvard Medical School as its valedictorian in spite of tackling brain cancer during his first year - the cancer from which he had been given a 0% of surviving. Jordan was a remarkable human being by every possible measure. He also firmly believed - to the point of putting his own life literally on the line - that his and others' path to health was through connecting his mind with his body, and through diet.

Twelve months after the onset of both of his battles with stage II colorectal cancer, by adhering to nothing more than a self-prescribed regimen of daily meditation informed by his Tibetan experience and a strict macro-biotic diet that Michio Kushi himself had created for my brother at his institute, Jordan's tumors disappeared and were, upon each final medical examination, untraceable. Both times, his doctors' reaction was the same: 'It's impossible'. And both times, my brother felt vindicated in his beliefs.

Back in Hong Kong, Jordan told me on the phone that this latest colon cancer was Stage IV, having spread to his lymph nodes and through them to other organs. He had chosen to tell us - his family - only because of this. He had entered hospice so that he could free himself of daily responsibilities, to allow him to re-double his focus on healing himself. He insisted, emphatically, incessantly, that he had no intention of dying. 

My brother lived another nine months, battling 25-plus tumors everywhere from his brain to his lungs to his stomach and beyond. The largest - in his stomach - was the size of a cantaloupe. The week before that - the last in which he was able to articulate his thoughts - he reiterated that he had no intention of dying, but instead was grappling for one final piece to the mental mystery of healing. To his last breath, he felt he could heal himself, as he had done so many times before.

_____________

I include this story not to suggest the mind's absolute control over the body, or that diet alone is a panacea. Jordan's is, however, one of countless examples - in this case a very personal one - that points to the equally irrefutable influence of both diet and our psychological state over our health. My brother would not have been able to make his tumors disappear had his diet, or mind, or both not supported it. In tribute to my brother, I offer a web link to the only online presence he has: 2 enlightening interviews at the 2000 Macrobiotic Summer Conference, in which he discusses his battles and his medical philosophy - here.

We at FFFL are not doctors, oncologists, or cancer researchers. Cancer may well not be 'curable', capable only of going into remission, whether temporarily or permanently. It is likely caused by factors that are equally genetic, environmental and chemical. That said, diet has been proven many times to slow, stop or reverse cancer's spread - often completely, in people across the globe. The same holds for other chronic diseases that are as varied as the stories and people associated with each. I include links to just five testimonials/videos below in which the only common thread is the adoption of a plant-based diet and a resulting remission of cancer. To reiterate: we are not in any way advocating refusal of conventional medical treatment in the case of a cancer diagnosis. Our interest lies in exploring and sharing what we have learned about the very real power of diet in influencing health, lowering risk and reversing disease. Some stories:

  1. Ruth Heidrich, PhD - breast, lung, bone and liver cancer. Cancer-free since 1982
  2. Kelly Binkoski - invasive ductal carcinoma, triple-negative. Cancer-free since 2014
  3. Scott Gill - stage IV colon cancer. Cancer-free since 1990
  4. Candace-Marie Fox - stage III thyroid cancer. Cancer-free since 2014
  5. Kris Carr - stage IV liver and lung cancer. Cancer-stable since 2005

Moving onto to diet itself, let's look at three specific foods (or groups), their relevant key nutrients and the current science that links them to cancer prevention. A powerful paper prepared for the World Health Organization (WHO) jointly by the University of Oxford, the National Cancer Institute and Harvard University's School of Public Health - included in full here - proposes that dietary factors account for 30% of all cancers, making it second only to tobacco use in cancer promotion. In one section, they list diet as being responsible for 80% of the increase in colon cancer rates between developed and developing countries, where colorectal cancer rates are ten-fold higher in the former than they are in the latter.

The most studied group of cancer-fighting foods are crucifers - aka brassicas. These include broccoliBrussels sprouts, cabbage, cauliflower, collard greens, kale, kohlrabi, mustard, rutabaga, turnips, bok choy, and Chinese cabbage, as well as arugula, horse radish, radish, wasabi, and watercress. All crucifers contain sulfur-containing compounds called glucosinolates, which have been shown to reduce certain types of cancer, either by removing carcinogens from the body before they can alter DNA, or by preventing normal cells from being transformed into cancerous ones. They are of particular interest in the prevention of lung and colorectal cancers. It is advised to consume these foods raw, for two reasons: 1 - the act of chewing results in glucosinolate hydrolysis - which creates the indoles and isothiocyanates that do the protecting; and 2 - cooking inactivates the enzymes that catalyze the all-important hydrolosis that protects us. Nutritional scientists also recommend cruciferous vegetables for their ability to fortify your gut's lining. This lining is all that separates the contents of your gut from your bloodstream. The anti-inflammatory, immune-strengthening properties of crucifers' indoles strengthen the lining, allowing toxins to remain trapped inside and be purged without seeping into your bloodstream and causing inflammatory havoc. Table 1 midway through the linked article here from OSU's Linus Pauling Institute lists crucifers in order of their glucosinolate quantity.

Coffee is the most popular drink in the United States. 83% of us drink it - making us the world's largest consumer. Coffee has several compounds that are of interest with regard to cancer. Caffeine speeds carcinogens' (and other toxins') passage through the digestive tract, reducing the time our bodies are exposed to them and lowering our risk of colorectal cancers. It also contains the antioxidant cholorogenic acid, which reduces inflammation and promotes self-destruction of cancer cells. Lastly, coffee's lignans regulate cell growth and promote the self-destruction of abnormal cells, including cancer. More information on coffee's anti-cancer properties can be found at the American Institute of Cancer Research (AICR) here.

Beans are an area of great interest, and not just for their cancer-fighting properties. The plant kingdom's best source of protein, beans are also vitamin and mineral powerhouses. Beans are high in fiber, which creates the sensation of fullness and helps regulate digestion, pushing toxins and carcinogens through digestion more quickly, as with coffee. Further still, beans are low in sugar, which prevents over-production of insulin, helping to decrease hunger. Together, these properties significantly assist us in achieving weight loss and reducing body fat, lowering the risk of inflammatory diseases like type 2 diabetes, heart disease and cancer. Lastly, beans contain the plant world's highest levels of anti-oxidants, which helps us to eliminate free radicals that have been cited widely in cancer prevention studies. In one, the National Center for Biotechnology Information conducted an eight-year study in Uruguay - where legumes are a major part of the national diet - and found a those individuals in the top third of bean (and lentil) consumption had significant decreases in the risk of the following cancers: oral cavity, pharynx, esophagus, larynx, upper aero-digestive tract, stomach, colorectal and kidney. AICR concurs that regular legume consumption convincingly reduces the risk of colorectal cancers - citing both its fiber, which we've discussed, and its folate, which regulates DNA and cell growth - as key to their conclusion. AICR is a treasure trove of information on plant foods and their ability to reduce the risk of cancer. We encourage you to explore their links and data related to a number of food groups here.

On the flip side, certain foods and their effect on our physiognomy have been shown to greatly increase our risk of cancers. These include red meat (colorectal cancer), alcohol (mouth, pharynx, larynx, oesophagus, colon and breast cancers) and body fatness - primarily caused by a high-sugar, highly processed diet (cancer of the oesophagus, pancreas, colon, breast, endometrium and kidney). Minimizing intake of these foods and remaining lean are of central importance in reducing risk. 

So what to conclude?

Plant-based foods are not a panacea. Eating crucifers will not guarantee you will live a cancer-free life, nor will a diet that includes adzuki beans guarantee a reversal in your colorectal cancer diagnosis. We do not encourage you to forego the (surgeon's) knife in favor of the (table) fork. Those are personal choices, and surgery is directly responsible for innumerable lives being saved across the world. 

What we are saying is that there is abundant nutritional, biochemical and molecular evidence, researched and supported by world's most respected institutes, that a plant-based diet in general - and one that includes key nutrients and food groups in particular - directly lowers your risk of many cancers. The most comprehensive book ever published on the links between food, nutrition, physical activity and cancer prevention, a summary of which can be found here, includes a fantastic matrix on pages 8 and 9 that maps foods to their likely influence on cancer factors. Created by a global partnership of more than 200 scientists and experts in 2007 and funded by the World Cancer Research Fund (WCRF) and American Institute of Cancer Research (AICR), the full report - all 537 pages of it - can be found here.

Copyright FFFL

Beyond food, we know that non food factors significantly contribute to your overall state of health: your genetics, lifestyle (e.g.: smoking), psychological well-being and stresses, as well as environmental factors (e.g.: air pollution), quality of sleep, level of fitness, etc. etc. 

But food is our fuel. It feeds us on a molecular level and promotes or inhibits every one of the millions of bio-chemical and bio-mechanical processes that keep us alive and healthy, or make us sick. Food influences what genes express themselves, and which are suppressed. What you put in your body matters - more than anything else - and can influence the other factors we listed above significantly. Without a healthy diet, like so many others before him, my brother's life would have been considerably shorter that it was. And while death by cancer at the age of thirty-eight is a tragedy, his diet bought him the most precious of human commodities - one for which I will personally be forever grateful and which made the difference beyond all others. 

Time.

 

 

Week 7: Food Dollars - How our Choices are Making us Sick

Penny Wise and Pound Foolish.

While Robert Burton, the Oxford Professor and author, first coined the idiom in 1621 in reference to the English Pound, the enduring expression, currently defined by www.dictionary.com as 'stingy about small expenditures and extravagant with large ones', is perfect for describing our food priorities, including those that have landed us in an increasingly global health crisis, fueled by diet-induced obesity and related medical expenditure. 

In simple terms, the US Government - through its policies and subsidies, and individual Americans - through our choices in how we spend our dollars, are partners in the paradoxical creation of a food desert in the world's richest country.

The reason is twofold.

First, we have drastically reduced the amount of money we spend (or are willing to spend) on food. In a 2012 article in The Atlantic, writer Derek Thompson provides some startling graphs on the shifting nature of the American budget. In the 103 years between 1900 and 2003, family food expenditure dropped a whopping 30%, from 43% to 13% of total income. Ditto clothing, which today consumes just 4% of our budget, a 10% reduction from 1900 levels. Three questions arise from this data. Ignoring clothing for a moment, the first is: what has transpired that caused us to spend that much less on food? Part of the answer is, we have become a lot richer - 68 times richer - than we were in 1900, when over half the country worked in agriculture and there were more servants than sales workers. Thus food prices, which have dropped dramatically while wages have increased - especially since WWII, when manufacturing buoyed the American middle class, simply represent a smaller amount of an increasing budget. The other major reason for our reduced spend can be addressed with a second question: why have food prices dropped? The answer here is less benign: as family farming has withered and factory farming has emerged, in large part due to federal subsidies, the focus on food yield has overwhelmingly replaced the focus on food quality, for reasons of commercial gain. Put another way, we used to grow food to maximize our family's nutrition-based health - or buy it from someone who did so for us. Today, however, we have outsourced that job to large companies whose sole charge is to maximize shareholder profit. This is accomplished two ways: driving down costs by maximizing volume (yield) while using the least expensive source ingredients; and finding increasing ways of parting consumers with their dollars by creating new food products. We will come back to factory farming and the US Government in a minute.

But first, regardless of what Big Ag and Uncle Sam are up to, I can't help but dwell on the fact that we used to readily spend 43% of our precious income on eating; and yet today, as rich as we have become as a country by contrast to our earlier selves, we spend just 13% and complain about food prices vociferously. To understand the full picture, we need to look at where we are spending those dollars, if not on foods that prioritize our long term health.

Which brings us to our third question: what are we doing with the 'extra' 40% in discretionary income? The answers may or may not surprise you. First, housing has become more expensive, and accordingly we have increased our housing spend by 10%, according to Derek Thompson's chart. Income spent on health care costs, by contrast, have risen just 1% over a hundred year period. How? The US Government, both directly and via your employer, has picked up the tab - to the tune of three times what we as individuals spend, according to Thompson. Health care spending today comprises 16% of the entire US economy - a rate that has quadrupled in the past 50 years. In 2005, the US spent $190 Billion treating obesity-related conditions alone, according to a study cited by Harvard's School of Public Health. That money comes from taxes. In other words, we are spending more on healthcare - via taxation - to treat the conditions we have created through our dietary choices.  

But that still leaves roughly 18% more income on the table, once you neutralize the so-called necessities. Where is it going? Chart 43, on page 67 of the linked 2006 report by the Bureau of Labor Statistics, shows us that we have increased our spend on non-necessities by 28% since 1900. To quote the final paragraph in the study: 

In the 21st century, households throughout the country have purchased computers, televisions, iPods, DVD players, vacation homes, boats, planes, and recreational vehicles. They have sent their children to summer camps; contributed to retirement and pension funds; attended theatrical and musical performances and sporting events; joined health, country, and yacht clubs; and taken domestic and foreign vacation excursions. These items, which were unknown and undreamt of a century ago, are tangible proof that U.S. households today enjoy a higher standard of living.

So we've chosen iPods over pea pods. But at what cost?

Let's return to what we eat. About 90% of the dollars Americans spend on food goes to buying processed food products, according to Eric Schlosser, author of the seminal Fast Food Nation. But how come there's so much junk food on the shelves in the first place, and where are all the vegetables, fruits and other healthy produce we should be eating instead? To understand this, we need to first look at the American farm. Farming, which before WWII comprised 50% of all US jobs, accounts for less than 1% today. Of the 2.2 million farms that remain, according to the group Farm Kind, 90.5% of those are family-run, small to medium sized farms that produce in total 32% of our food. The remaining 9.5% of farms are large to extra large - what we would term agri-businesses. These mega-farms produce over two thirds of our food, at nearly 67%. Their operations are heavily underwritten by the US Department of Agriculture, which spends $30 billion per year on subsidies to farms - more than half of which goes to the tiny share of mega-farms that are supplying most of our food. Shockingly, over 90% of all funding - for small or mega-farms alike, according to the Cato Institute, goes to just five crops: corn, rice, wheat, soybeans and cotton. Ignoring the last non-food crop, the United States Government, through its subsidies, is in essence paying businesses to grow a very specific set of nutrients - nutrients that are unsurprisingly the foundation of the junk foods on which we spend 90% of our food dollars. We will come back to one of these - corn - in a moment.

So, in summary: we are spending less on food and more on lifestyle products and services; what we do spend is overwhelmingly spent on junk foods comprised of corn, soy, wheat and rice created by mega-farms, refined beyond recognition into calorie-empty food products by mega-companies; and the US Government is aiding and abetting the whole enterprise through subsidies, while admonishing us (on occasion) for not eating enough vegetables.

Hmm.

So how much more expensive is it to eat healthy, anyhow, assuming we can resist the temptation of snack foods, we are willing to spend money on real foods, and we will spend time to prepare our own meals with that nutritious produce after a long and exhausting day at work?

As reported in a 2007 New York Times article, Americans spend an average of $7 a day on food - $4 for the lowest income individuals. A 2,000 calorie diet of junk food averages just $3.52, according to the study cited in the article, while they posit that an equal calorie day's worth of high-nutrient, low-calorie foods would cost over ten times that amount - or $36.32. But to stop reading there would be to miss the big picture, for two reasons: first, calorie-empty (junk) foods leave our bodies less satisfied than whole foods, making us consume (far) more of it than we otherwise would, increasing our relative spend; and second, a calorie is not just a calorie, when it comes to nutrition. As we saw in Week 5's post, a 'Double Gulp' from Seven-Eleven, at 750 calories, is the caloric equivalent of 15 servings - or 5 lbs. - of broccoli. The soda delivers zero nutrition - not one vitamin or mineral - starving our body and making it ask for more 'food'. The (hypothetically possible) consumption of that much broccoli, on the other hand, provides 100-3,000% of our daily requirement of eighteen different vitamins and minerals. Besides the insanity of the comparison, the roughly $5 worth of broccoli would provide both nutrition and fullness well in excess of three times the cost of the roughly $1.75 soda, making it a clear value for money, from a nutrition perspective. So when we compare dollars and food choices, we need to look at the correlation between calories and nutrition. In that sense, the numbers don't support a dire conclusion.

A 2008 study by the USDA here used Nielsen Homescan Data to determine the average cost of 153 commonly consumed fresh and processed fruits and vegetables. They found that the average American could satisfy the USDA's dietary recommendation for fruits and vegetables for just $2 to $2.50 per day. At the bottom of each list: watermelon - at $0.17 per cup, and pinto beans, at $0.13 per cup. The 244-calorie beans are an excellent source of 7 vitamins and 9 minerals; while the watermelon is a good source of 6 vitamins and 3 minerals. And that nutritional powerhouse, broccoli? A single 55-calorie serving would cost about $.30. In short, your $2 could go extremely far in supplying you with all of your dietary needs. 

It is not expensive to eat well. It is simply a choice.

Now that we've determined it's possible to eat healthy foods on a budget, we need to look at how those good foods are produced, shipped and sold, to fully appreciate their true cost. While all fruits and vegetables are better for you, on balance, than any other food category, there are several considerations with regard to each food that greatly affect its nutritional value to us as consumers, as well as its price. These include classifications (conventional, organic, pasture-raised...) farming (pre-harvest) practices (fertilization, pre-peak harvesting, mono-cropping...), post-harvest practices (food coatings; chemical bio-retardation; food handling...), food transportation (distance, method...) and finally point of sale practices (handling, pre-processing, storage...). 

All of these have two primary points of influence: 1 - the people creating our food, and the choices they make with regard to what to grow and how; and 2 - the post-harvest life of that food, and its influence over nutrient retention and cost to consumer. 

There has been no shortage of discussion around the subject of 'local' vs. 'global' eating. If anything, the 'locavore' movement is gaining in speed and popularity, with countless restaurants sourcing their entire menu within the 100-mile accepted standard for 'local', and listing individual farms from which they purchase their foods, treating meals like artisanal labors of love. There is also no shortage of studies around the subject. One, by Kathleen Frith - the former Managing Director of the Center for Health and Global Environment at Harvard Medical School - echoes the conclusions we have read in a number of reports: as a general truth, factory (global) farms focus primarily on yield to maximize profit, at the expense of nutrient density (breed selection and soil richness being two major factors), while small (local) farms focus primarily on taste (which correlates strongly with nutrient density and variation) in order to ensure a strong customer base. On the cost side, large factory farms are production dynamos, using scale and efficiency to reduce expenses, while the inefficiencies of a small family farm has neither the scale nor costly machines of their mega-competitors, driving their prices upward. Conversely, the mega-farms rely invariably on costly transportation - by plane, boat, train and truck - to distribute their goods to consumers to a wide network of buyers, while small farms tend to travel fewer miles to sell their produce, reducing their operating costs in that regard. In the end, however, food bought at a farmer's market, from an upscale grocer or from a food co-op (the three primary outlets by which these farms to reach customers) will most likely cost more money - perhaps significantly - than conventional produce sold to mega-corporations like Costco or national supermarket chains like Kroger. The same goes for an 'organic' product vs. a 'conventional' one: the former costs more because the labor, acreage, supplies and, in the case of livestock, the physical environment that supports the animals' own health - all consume additional capital. So, if dollars spent directly on food are your only consideration, by need or by choice, you can write off the world of small farm, organic, heirloom, wild-caught, small batch, hand-picked, lovingly raised foods as conceits for those with the disposable income to care about these things. And perhaps, you can spend just enough to choose factory-farmed vegetables over snack foods, because in the end, it really is affordable to eat good food, and the gulf between the two food groups' nutrient values to you as a biological machine is the fundamental difference between health and sickness. So if that's all you take away from this, we've done our job. 

But.

There are two additional considerations we must recognize before making that decision. The first of these has solely to do with our health - in terms of nutritional value. Produce crops grown by small-farm, local business owners are by every measure more nutritious than their conventional counterparts. From soil charging to mono-culturing to doubling crop cycles to breeding nutrient-inferior breeds to using synthetic pesticides to harvesting 'sub-ripe' foods to transporting long distances to pre-processing foods, the choices made by factory farms at every step diminish the nutrition in their food products. An excellent report from the Organic Center called Still No Free Lunch - one we encourage you to read - illuminates dozens of studies across the US and UK on the subject of nutrient decline in our food system over the decades. One such UK study found that we would have to eat three apples in 1991 to supply the same iron content as one apple in 1940; and that broadly, British spinach's potassium content dropped by 53%, its phosphorous by 70%, iron by 60% and copper by 96% over the same period. In the US, a 2004 University of Texas study sifted through 50 years of USDA food composition data for 13 nutrients in 43 garden crops - comparing what we grew at home with what is now commercially farmed. Their conclusion? Declines in concentrations of 6 key nutrients: 6% for protein; 16% for calcium; 9% for phosphorous; 15% for iron; 38% for riboflavin (B2); and 20% for vitamin C. By contrast, not one nutrient in any food measured over a 50-year period increased in value.

In this sense, we are incontestably getting more for our money when buying foods grown by the small farm. I could fill an entire blog with examples and data comparing the levels of vitamins and minerals of any crop grown each way. To make the point, I will offer one example for one of the many key decision stages in the life of a food crop: varietal selection. Corn is the biggest crop in the United States, comprising 30% of all US farmland. More than 25% of supermarket foods contain corn, according to author and health guru Michael Pollan. Rick Sietsema, a corn farmer from Allendale, pegs it at 75%. Perhaps more shocking still, a strand of hair belonging to Dr. Sanjay Gupta - CNN's telegenic health reporter - was tested with a mass spectrometer, which can evaluate tissue on a molecular level to pinpoint its sources: 69% of his hair's carbon molecules were made of corn. He is an 'average American' in this regard. Thus, corn's nutritional value is perhaps more important than that of any other food crop. This stunning chart shows the comparison of non-GMO to GMO corn - the latter comprising 88% of all corn produced in the US. The upshot: within the same cultivar (that is, comparing yellow corn to yellow corn), non-GMO corn contains between 6 and 438 times the nutrient levels of phosphate, calcium, magnesium, potassium, manganese, copper, sulfur, cobalt, iron, zinc and molybendum as that in GMO corn. The graphic below reviews the toxicity and nutrient decline in GMO corn in detail. Between cultivars (that is, comparing yellow corn to its more historically plentiful cousins, blue and purple, for example), there are also differences. Blue corn contains almost 30% more anthocyanin - a key phytonutrient. This chart from a 2013 New York Times article demonstrates how, through cultivar selection across dozens of popular crops - not to mention their genetic modification - our agri-businesses have overwhelmingly opted to grow crops for maximum yield and robustness, at the significant expense of nutrition. 

Copyright FFFL

The bottom line is this: to maximize nutrient levels per calorie consumed - which does translate to dollars spent, since organic and/or small-farm foods are more nutritious than conventional - we should opt for the least industrial varietals and sources for each. As we've already discussed, the farmer's market is your best bet, while the organic section in your supermarket is a decent second choice.

Our final consideration for spending more money on food than we as a population do today examines the hidden costs - that $190 Billion in annual US spending on obesity-related chronic disease for which we pay via taxes or direct personal expense - that we discussed earlier. Even if you, personally, are 'healthy' - by which I mean you haven't had surgeries such as bypass, bariatric, liver or kidney transplant, colectomy, etc. - you have paid for it regardless via taxes on behalf of the hundreds of thousands of Americans who have. This money, if redistributed equally among the two thirds of the US population that qualifies as overweight today, would add $2.36 per day to each of their food wallets - enough to pay in full for the USDA's daily recommended intake of fruits and vegetables, in perpetuity.

By several measures, then, we cannot afford not to eat nutritious foods:

  • We used to spend four times as much money on food 100 years ago as we do today, with all our newfound wealth
  • We pay for this privilege with our health, costing US taxpayers an obscene amount of money on disease control - five times what we spent on the same modern diseases just 30 years ago
  • We pay for it with the decline in nutrient values - nutrients which are absent in processed snack foods - but which even for fruits and vegetables are plummeting at mega-farms due to their choices and practices, requiring us consumers to eat an ever greater amount of both to deliver the same nutrients as those foods' pre-engineered, pre-industrialized selves

We strongly encourage you to prioritize healthy eating over non-necessity spending. It's less expensive than you think, in direct outlay; and the hidden costs of not doing so are exorbitant and shared by all of us.

Put down the iPod. Pick up that pea pod.


Week 5: Diets - Why They Don't Work

"Prohibition didn't work in the Garden of Eden. Adam ate the apple."

This poignant quote by Vincente Fox was about Mexico's drug problems during his tenure, and his attempt to legalize them to take the wind out of the cartels' sails. It didn't happen, of course. But he could just as easily have been referring to diets today. Why? Hunger for the forbidden goes back since long before the story of Adam was written. It's in our genetic code.

We saw in Week 1's post that we need all nutrients found in the human body, in adequate supply, to be present and available when needed in order to function optimally. When it is short-changed of nutrition, as during diets, the body signals the brain to crave whatever it's missing in order to spur the action that will result in its obtainment, short-changing our attempt to deprive it. Diets don't work. They invariably miss the central point that the body needs food from all nutrient categories - categories that include foods that every diet, from the first to the latest, has tried to omit.

Understanding what these nutrients are, what they do for us and where to find them is the first key - and the primary focus of this website. Once we can distinguish health-promoting foods (those produced by nature and which promote health) from unhealthy foods (those altered and/or produced by industry and which promote sickness), we can move on to issues of sourcing, nutrient balances, combinations and preparations that best support your long-term health.

But first, we need to understand the body's biology insofar as how it sees food. Which brings us to diet strategy number one: reduce calories. This is a dangerous game, because it backfires and results in weight gain. To explain: the body is extremely good at managing its fuel supplies. In the absence of adequate intake, the brain (correctly) perceives the loss as a threat, and starts producing large quantities of cortisol and adrenaline, the so-called 'stress hormones'. These in turn send a signal to the body's metabolism to slow down, conserve fuel and reserve the rest for later. Slowing your metabolism prevents nutrients from being absorbed and calories from being burned, i.e.: used up. Instead, the body stores the nutrients it's trying to protect in fat cells, making us gain weight and girth. So, instead of nourishing the body and fueling its metabolic processes, we are telling it to hunker down and hoard what little it has, much as a squirrel does in storing nuts for a long winter. If the nuts aren't eaten and used up, they accumulate. Except that in our case, instead of nuts sitting in a tree, we store fats in our bodies. The result is that losing weight becomes even harder.

This is why dieting by calorie reduction is a game of attrition: even if your overall weight reduces (maybe you're exercising in addition to limiting intake), your willpower to keep starving yourself is pitted continually against your body's inexhaustible ability to produce stress hormones and slow your metabolism. Eventually, biology will triumph. 

Copyright FFFL

So much for diet strategy one. Let's look at another common strategy: reduce fat intake. We saw in Week 3's post that fats are an essential set of dietary nutrients without which our bodies cannot properly function. Fats fuel metabolism. Your brain is comprised of cholesterol and fat - primarily saturated - and needs to be fed in order to function. Without fat, calcium cannot be absorbed by your bones, making them weaker. Fat insulates your liver from the damage of alcohol and medications, and fat coats your nerve endings, protecting them from damage. Further still, unsaturated fats are critical anti-inflammatories that keep the body from attacking itself. 

Fat - saturated or unsaturated - is not the enemy. They are produced by nature for the reasons listed above - to fuel life, when paired with the other nutrients the body evolved to need and use: vitamins, minerals, fiber, carbohydrates, protein and water. The fats that do cause damage are man-made fats, which are called trans-fats. We have covered these extensively in Week 3's post, and won't duplicate that discussion here. 

Besides the profusion of illnesses that inadequate fat intake promotes, the loss of this fuel source chemically tells the body to signal the brain to replace it. But with what? Since the 1977 release of the McGovern report, the 40-year trend in the United States - and subsequently elsewhere - has overwhelmingly been to substitute fats with carbohydrates. Besides fueling vastly different functions in the body, carbohydrates in their most common form - the refined starches, flours and sugars found in nearly every boxed, bagged or bottled item in your supermarket - are not just nutrient poor: they are overwhelmingly responsible for the raft of chronic diseases we as Americans - and those who mimic our dietary habits - are experiencing: heart disease, type II diabetes, cardiovascular disease and cancer, to repeat a few here, conveniently packaged in a human host. A good article by Harvard's School of Public Health on the subject is linked here.

So we can see here that the two most common approaches to dieting: 'eat less' and 'reduce fat intake' are destined to fail and moreover can and do cause severe damage to the people implementing either.

A proper diet - defined in one entry by Miriam-Webster as 'habitual nourishment' - not dieting - defined by M-W in another entry as 'a regimen of eating and drinking sparingly so as to reduce one's weight' - must be the foundation of any approach to improved physical and bio-chemical health, if it is to have any chance of success. And a proper diet, if you've not guessed by now, begins with the selection, preparation and consumption of quality, whole, natural, 'unimproved' foods as found in nature. That means eating foods from all nutrient groups that are high in nutrient density and variation, and are as fresh as possible to avoid spoilage and the deterioration of nutrient quantities and qualities. These are the foods with which we evolved, and with which we coexisted almost exclusively until the recent past.

There are other considerations besides food that greatly influence one's health beyond diet. These are obvious, but are worth repeating in brief here because when we speak about diets we are essentially talking about returning to a state of optimal health that supports happiness, longevity and vigor. Adequate sleep is one. Reduction of stress is another. A third - the focus of much ink and in itself a multi-billion dollar business - is exercise.

What we need to remember is that exercise is the expenditure of energy - energy that comes from foods. The more we use, the more we deplete our resources, and the more we need to eat in order to replace what has been lost. At rest, without moving, our bodies use up roughly 1200-1600 calories per day to feed its automatic processes, such as pumping blood, producing cells, operating lungs and other organs; repairing itself, etc. This is called your basal metabolic rate, and you can calculate yours here. From a purely caloric standpoint, if you slept for 24 hours, your body would use that amount to fuel itself. 

Calories ingested beyond these are either stored as fat or used to feed voluntary processes that are the sum total of our physical activity: walking, talking, working, playing or exercising. So you'd expect that what follows is the simple need to consume only as many calories as you use - simple math. Right? Well, yes in mathematical terms. But as Dr. Mark Hyman, MD, writer and Director of the Cleveland Clinic Center for Functional Medicine says, "food doesn't just contain calories, it contains information. Every bite of food you eat broadcasts a set of coded instructions to the body - instructions that can create either health or disease." He illustrates this point in a web posting here, in which he compares the consumption of 750 calories of soda with 750 calories of broccoli. In terms of size, the first is a 'Double Gulp' from Seven-Eleven, while the latter is 15 servings, or 15 cups / 5 lbs., of broccoli - unlikely as your stomach cannot hold that much volume. Regardless, the theoretical comparison is an important one. Both sources are predominantly carbohydrates, but here again, to paraphrase, a carbohydrate is not a carbohydrate. The results of our consumption of each, in brief: the soda promotes what he calls 'biochemical chaos', including unchecked fat production, inflammation, bad cholesterol and blood pressure - delivered via 46g of sugar. The % of your daily requirement of vitamins, minerals, proteins and fats that the soda delivers? ZERO. Not a single vitamin, mineral, fat, fiber or protein. On the other hand, an equivalent caloric intake of broccoli - however unlikely - contains from 100% to 3,000% of your daily need of eighteen different essential vitamins, minerals, protein, fiber and omega-3s, which is astounding and what makes broccoli one of the plant world's most super superfoods, even in one serving. There is essentially no relationship between the two 'foods'. Dr. Hyman quips that a kindergarten class knows this, and yet 'every major governmental and independent organization has bought into [this] nonsense' - that a calorie is a calorie. 

Which brings us back to exercise. Michelle Obama has spent much of her professional life as First Lady promoting a campaign called 'Let's Move', aimed at reducing obesity, particularly in young children. The term was originally meant to provoke a call to action (the movement), and she regularly addressed underlying causes of obesity, namely the foods that caused them. However, the candy, soda and processed food lobbies saw the potential loss of control over their marketing message, and banded to 'partner' with Let's Move in providing corporate sponsorship. Kellogg, Coca-Cola, Nestle, General Mills... all of them now in control of the marketing message and opportunities for yet more food product to be introduced to 'address the issue'. The result: over the past few years, Let's Move has gone from attacking obesity sources (i.e.: dangerous food-like substances) to addressing its symptoms - namely getting outside more and moving your body, in a perversion of its original name. While exercising is positive for anyone and critical to holistic health, look again at the numbers: Americans are exercising twice as much as they did 30 years ago, while in the same time the rate of obesity has also doubled, as conveyed in the informative documentary, Fed UpSomething doesn't add up. And that something is what people are choosing to consume.

To wit: since joining Let's Move, the food industry in principle has taken no products off of shelves, but rather have added new products to address a new market: the 'healthier snack alternative'. In just one example, partner Nabisco created a new product: the low-fat Oreo. At 150 calories, it's 9% less caloric than 'regular' Oreos. The accompanying reduction in sugar: zero. A three-cookie serving contains the same whopping 56g of sugar as its 'original' version on the shelf. You'd have to eat twenty plates of pasta (another carbohydrate) to glean the same amount of sugar contained in three oreos. 

In short, Let's Move has been neutralized; industrialized food product companies have gained market share; and nothing has been done to reduce the underlying cause of obesity, which would necessitate the reformulation or better yet removal of scores of products from store shelves. We will leave the discussion there, but to read more, here's a good article on the subject.

We've seen that calorie reduction, fat reduction and exercise alone do not promote health or weight loss, and that we need to change what we eat in order to truly be healthy and lean. But what about the proliferation of so-called fad diets? Atkins. Paleo. Juicing. Low-carb. These are just 4 of the more recent fads created to move product and make someone money. The key problem? They all emphasize one food or food group. They ignore the entire point: that variety is key to health. This includes fats, carbs, fiber, vitamins, minerals and protein - all present in the body and all present in nature - for the reasons we've explored in this and our other posts. Juicing? We need the fiber that juicing removes in order to regulate digestion and nutrient absorption. Paleo? (High-quality) cultivated carbohydrates that Paleo forbids provide critical nutrients that allow us to ensure food supply over a larger population and broader nutrient access. Low-carb? Ditto. Atkins? It's the pre-Paleo Paleo Diet. Beyond being unhealthy, diets ignore human psychology, which as we saw at the beginning of this post creates hunger - in this case, psychological hunger for what we can't have, and leaves us with the overwhelming feeling that we are denying ourselves, whether or not our bodies are receiving adequate nutrition. Thus, they are doomed to fail like calorie reduction: the body will produce enough hormones to eventually overcome our willpower. So what may work in the short term will invariably fail over time. Unless we change our habits, starting with an education like this one.

If there were a diet that worked, we would not keep inventing new ones. Nature devised a successful diet from which we evolved into being. Start trusting her instead of business executives.

Stop eating junk - all of it. Eat real food - the kind grown by nature. Eat for nutrient density, completeness and balance - in the right amounts. Keep tabs on what you've eaten. Prepare it at home when possible and practical; and make the healthiest choices at food stores and restaurants when you cannot. 

And Let's Move... on.

Week 3: The Modern Diet and Disease

Our diet is quite literally killing us.

The vast majority of those of us living in industrialized nations have outsourced our nutritional health to people we will never meet: people whose boardroom decisions carry 'life and death' consequences for us, while their agricultural, factory and laboratory practices - if we could see them with our own eyes just once - would forever change what we choose to eat and how we view our food supply for the better.

As is widely discussed in books, newsrooms and living rooms, our rate of obesity has more than tripled in just half a century - to 36% - and is projected to hit 50% by 2030. Those whose BMI qualifies them as overweight is almost double that amount: 69%. As one would expect, our rate of calorie consumption has also increased, to 2,700 per day - up 20% since 1970 - which is cause for alarm. This is due in large part to the widespread proliferation of high-calorie, low-nutrient foods that leave us less satiated. They often trick our brains' reward centers into craving - and eating - more than we should, thus making us more likely to purchase yet more of the same food-products in order to fill our ever-hungry bellies.

Yet in spite of consumers' dogged focus on counting and reducing calories, I will argue that the number of calories we ingest is not dietary disease's primary cause - not by a long shot. Astoundingly, according to the American Journal of Clinical Nutrition (AJCN), the vast majority of our dietary calories - two thirds of it - comes from just four sources: Dairy (10.6%), Refined Grains (20.4%), Refined Sugars (18.6%), and Refined Oils (17.6%). It is far and beyond what we eat - not how much - that determines overall health and the prevalence of so-called modern illnesses, from cancer to cardiovascular disease to diabetes to hypertension to osteoporosis and beyond. Consider the following statement from AJCN: "In the United States and most Western countries, diet-related chronic diseases represent the single largest cause of morbidity and mortality. These diseases are epidemic in contemporary Westernized populations and typically afflict 50-65% of the adult population, yet they are rare or nonexistent in hunter-gatherers and other less Westernized people."

In other words, it is not human to die of cardiovascular disease and many cancers. It is largely industrial - and results from our food choices.

None of the food categories listed above - not one of them - was available to our pre-agricultural ancestors. That said, we are in no way advocating a return to Paleolithic dietary habits which, beyond being impossible, is inadvisable from the standpoint of health. A great article in Scientific American highlights the fallacies of the Paleo-diet fad here It's incontestable that great gains in human health - and hence longevity - have been made on the back of Agriculture, such as the introduction of high-nutrient foods like whole grains and legumes, both of which must be cultivated; or the increase in yield and reliability of most foods whose presence and volume are otherwise variable. Further, the still-nascent field of nutritional science has begun to help us understand how our choices in food preparation greatly affect a food's value to our bodies. Take tomatoes, for instance. Touted for the presence of the anti-oxidant lycopene, which helps to eliminate free radicals that damage our cells, many people readily include them as part of a so-called healthy, balanced diet. However, we now know that cooking tomatoes increases the content of lycopene significantly - by up to 164% after a half-hour of cooking according to a 2002 study by Cornell University - over its raw state. Moreover, the bio-availability of the lycopene in a tomato - that is, our body's ability to use it - is influenced by the presence of other foods, as is its activity level once it is absorbed into our bloodstream, which increased by 20% in the presence of olive oil, says a 2000 study at the Northern Ireland Centre for Diet and Health. 

What we are advocating is a return to eating whole, high-nutrient foods that have been minimally - or knowledgeably - processed, and eating them in the proportion and combination that are of greatest value to our bodies' overall health. Generally, the more processed a food is, the more stripped it is of its nutrients. Paradoxically, the more a food has been engineered, the less nutritious it often is. Week 7's blog covers this subject in depth, with startling facts about GM corn - the US's biggest crop. A great New York Times article on the subject, called 'Breeding the Nutrition of of of Food', can be found here. Beyond science, the longer it's been since a food was 'living' (i.e: when harvested), the more its nutrient profile declines. Ditto various methods of storage, preparation and consumption. A good blog entry by fellow New Yorker 'Sweet Beet' here offers good rules of thumb. 

In short, the less healthy our diet is, the less our bodies are able to carry out their key functions: feeding our brains, organs and tissue; digesting the good and expelling the bad; and repairing itself so that you live longer, in better health - which is what this site is about to begin with.

So while is wholly unrealistic to expect any of us to pick up a farm implement on a daily basis, let alone a spear or a blow dart, there are others whose business it is to do exactly that in our stead, whose food product supports our health, and which is readily available in every supermarket - or better yet farmer's market - in the United States. Here is just one of countless resources for finding a market near you.

In its research, the AJCN goes on to list 7 characteristics of our ancestral diet, and how our shift to industrial agriculture has thrown every one of them off its evolutionary equilibrium: glycemic load, fatty acid composition, macro-nutrient composition, micro-nutrient density, acid-base balance, sodium-potassium ratio and fiber content. As we outlined in Week 1, the body needs all nutrients listed in our graphic in balance, in order to function optimally. Let's explore one important characteristic - fatty acid composition - in which the 'modern' diet has paved the way for chronic illness to proliferate.

To do so, we need to understand the differences between fats and why they're important. No food topic has been the subject of more ink over the past 30 years than fat, and no nutrient more vilified. An entire, highly profitable sub-market has opened up in which foods are re-engineered or processed to reduce the amount of fat they contain. Low-fat and fat-free are just two monikers you hear regularly. [Week 4's blog entry covers these terms in detail, here] In reality, however, fat is an extremely complex and varied set of nutrients. Some fats do in fact harm us. Hydrogenated and partially hydrogenated oils - aka trans-fats - are in overwhelming numbers of highly processed foods in stores and restaurants alike, from cookies and chips to baked goods and french fries. These fats raise levels of LDL (bad) cholesterol and triglycerides, while lowering levels of HDL (good) cholesterol. A caloric intake containing just 2% trans-fats increases our risk of heart disease by 23%, according to the Harvard School of Public Health. Most alarmingly, trans-fats - as well as an imbalance of dietary fatty acid composition (more on that below) - create an environment friendly to inflammation, which is at the root of the diseases that claim the most dollars and lives in industrialized nations today: heart disease, stroke, diabetes, and many cancers. As is broadly known in the scientific community, chronic inflammation can 'lead to environments that foster genomic lesions and tumor initiation' - i.e.: cancer, as summarized in a highly detailed 2006 entry in the Yale Journal of Biology and Medicine here. Put in plain English: cancer cells feed on inflamed tissue, while the reverse - a reduction in inflammation - starves the cancer cells of the nutrients that allow for their proliferation in our bodies. A key source of inflammation reduction is... other fats.

To wit: without certain types of fats, we would not just get sick; we would likely die, as did the rats in Burr & Burr's seminal 1929 study, when they were deprived of essential dietary fats - so-called because the body cannot produce these and must find them in the foods we eat. Burr & Burr's subsequent experiments were key to the recognition of both linolenic and linoleic acids as essential fatty acids, outlined here. These unsaturated fats, which are mainly found in plant-based foods and oils, nuts and fatty fish - are absolutely central to the basic health of our cells. Their introduction into our diets has the opposite biological effect of saturated fats: they lower our levels of bad LDL and triglycerides while raising levels of good HDL. A sub-group of these - polyunsaturated fats, comprised of Omega-3 and Omega-6 fatty acids -  is used by the body to tremendous and varied benefit: building cell membranes; coating nerve endings, promoting blood clotting and the formation of muscular tissue; reducing blood pressure; and reducing the risk of heart disease and stroke. Moreover, paradoxically and in direct contravention to popular dogma about fats, regular ingestion of unsaturated fats helps the body shed excess (stored) body fat by boosting its basal metabolic rate. In short, eating foods high in unsaturated fats helps you lose weight.

Of special interest to us, however, is the fact that Omega-3 fatty acids in particular are Nature's best form of inflammation control.

With regard to inflammation, it's worth revisiting our Paleolithic ancestors. While all unsaturated fats are important for maintaining good health, the hormones derived from the two types of polyunsaturated fats - the Omega-3 and Omega-6 fatty acids - provoke opposite responses in the body. Those from omega-6 fatty acids tend to increase inflammation (an important component of the immune response), blood clotting, and cell proliferation, according to health guru Dr. Andrew Weil, while those from omega-3 fatty acids decrease those functions

Copyright FFFL

In pre-agricultural societies, it is widely accepted that the levels of inflammatory and anti-inflammatory foods in our diets were roughly in balance - a 1:1 ratio. In modern Western diets, however, overwhelmingly comprised of dairy, refined sugars, refined grains and refined oils - all inflammatory foods - that ratio has become disproportionate in favor of omega-6s. The Center for Genetics, Nutrition and Health lists that ratio as between 15:1 and 16.7:1. The result, in brief: a rampant increase in incidents of cardiovascular disease, cancer, osteoporosis, and inflammatory and autoimmune diseases... the hallmarks of an industrialized diet, and the very things that are killing scores of Americans each year.

It's worth sharing the statistics: 64 million Americans suffer from cardiovascular disease; 50 million are hypertensive; 11 million have type 2 diabetes; and 37 million have an at-risk cholesterol level of over 240 mg/dL. Finally, an estimated 1/3 of all cancer deaths are due to nutritional factors, including obesity.

So what can you do - right now - to begin reducing your intake of inflammatory, nutrient-poor, disease-promoting foods? The answers - in great detail - will begin to fill this website over the next 49 weeks. In the meantime, a few rules of thumb:

  1. Stop eating snack foods, immediately. Instead, snack on nuts - especially walnuts, one of nature's greatest sources of omega-3s - as well as seeds, crunchy vegetables and fruit.
  2. Stop drinking soda. Drink water, copiously. And green or herbal tea. For that matter, replace juice with blended smoothies. Stripped of its fiber, juice is a sugar bomb and sends the liver into overdrive producing fat cells to store the oversupply of sugars.
  3. Replace squishy breads in plastic bags with breads made with sprouted (whole/live) grains and legumes whose germ is intact. Stripped of key nutrients, refined flour breads are quickly converted into glucose once digested, raising risk of type 2 diabetes and cardiovascular disease. Sprouted/whole grains have the opposite effect.
  4. Eat varied salads, often, that include wild grains and small servings of protein, and skip nutrient-poor, high-calorie dressings. Opt for a balsamic vinaigrette, which is low in calories and contains monounsaturated fat-rich olive oil, or skip the mustard and vinegar and substitute fresh-squeezed lemon juice.
  5. Avoid low-fat, lite or non-fat anything. Period. We've demonstrated the need for fats. Avoid the bad ones; embrace the good ones. Don't be fooled by jargon; it's there to get you to spend money.
  6. Unless you live in a state that allows access to raw milk products, cut back on the dairy products. They are good sources of calcium but are high in saturated fat, and pasteurization likely increases the risk of some cancers, like ovarian and prostate. Further, stripped of its digestive enzymes due to pasteurization's high heat, some 65% of us exhibit degrees of lactose intolerance. Dark, leafy greens like spinach can provide almost as much of calcium as yogurt; tofu almost 2.5 times that amount.
  7. Stock your pantry and refrigerator with easy-to-store-and-snack omega-3 rich foods, like walnuts and canned sardines. Consume cold-water, fatty fish like Pacific Sardines, Atlantic Mackerel and Alaskan Salmon. Either Sockeye or Coho, wild Alaskan salmon's populations are extremely well-managed, contain the species' lowest levels of mercury and other contaminants; is abundant thus easy to find; and is extremely high in omega-3s.
  8. To wit: cook more. Take the time. Restaurants are businesses and there to make money, or they go under. Unless you spend a fortune on fine dining at health-focused, farm-to-table establishments, your kitchen is your friend, and allows you to control what goes into your belly.
  9. Proportion size: reduce it. A serving of meat is 3-4 ounces - the size of a deck of playing cards - whereas the smallest restaurant steaks are typically 8 oz.
  10. Skip the seconds. To feel satiated longer, opt for foods with a low glycemic index, like oatmeal, lentils, fresh fruit, barley, and sweet potatoes, to name a few. 
  11. Eating vegetables means more than salad. Pasta recipes offer countless source of vegetable intake; likewise, roasting vegetables in the oven, drizzled in olive oil and exotic spices are both simple and delicious. Whomever says vegetables are boring is either lacking in imagination or simply lacking in recipes. Books like 1,000 Vegetarian Recipes prove the point.
  12. Skip the supplements. Get your nutrients from their source - not a drug company. Fish oil? Eat salmon. D3? Eat pastured eggs or get 20 minutes of sunlight. Vitamin C? Eat an orange, or squeeze a lemon into some water for a curative, thirst-quenching drink.
  13. Take everything in moderation, including moderation. The occasional (which means occasional) departure from the straight-and-narrow may not be good for you, but it's good for your sanity, is practical when you're dining out, and underscores the point that eating healthfully is about small choices over the long term - not one meal or immediate results. Make good choices, often, and your body and loved ones will be thankful.

For more rules of thumb, visit our Food Rules web tab here.

Week 2: The Food Pyramid and Food Policy - Big Business

Everyone’s a food expert.

In the Information Age, there are few things more difficult than divining truth from opinion on the internet – or just as commonly and more insidiously, willful deception buoyed by companies with a vested interest in swaying your beliefs, and earning your dollars. The proliferation of accessible online nutritional data means that companies can be highly selective in what they present, and find an abundance of ‘studies’ that support their agenda.

Just try Googling food pyramid. There are as many versions of it as there are individuals and companies vying for your food and nutrition-related dollars. Often these companies masquerade as independent institutes – institutes that upon closer inspection are funded by companies with vested interests in the outcome, or whose executive body has (or will have) ties to those companies. [A separate post will cover the alarming and complex ‘revolving door’ relationship between the USDA, FDA, Monsanto, the dairy industry and other cash crops.]

 From Dr. Oz to the mighty USDA itself and every author and health-related commercial business in between, everyone has a pyramid.

The worst of them are aimed at moving unhealthy product, little better than thinly veiled advertisements. Let’s take just one example. The USDA's most recent pyramid recommends 2-3 servings of dairy per day, depending on which version you read. Pasteurized dairy does provide a valuable source of calcium and is often fortified with vitamin D; however, there are many other sources of both. Moreover, current science overwhelmingly shows the link between consumption of pasteurized dairy and a host of risks and illnesses: osteoporosis, cardiovascular disease, several types of cancer, diabetes, Vitamin D toxicity and so on [the second half of Week 4's blog explores raw vs. pasteurized dairy in detail}. Yet unless you prepare your own food with an eye toward vigilance, dairy is almost unavoidable and is present in an overwhelming percentage of both processed and prepared foods across the United States - ultimately because of the USDA and its pyramid. In commercial breakfast dishes, salads, sandwiches, burritos, pasta sauces and coffee - just to name a few - dairy is nearly unavoidable without a special request to 'leave it off'. 

Beyond the general health risks associated with pasteurized dairy, much of what is available today contains rBGH (also known as rBST), a synthetic growth hormone created by Monsanto to increase milk production by 11-16% and approved by the FDA in 1993, in spite of the fact that independent international studies have shown that its use raises the risk of mastitis in both the cows and the humans who consume it significantly. Beyond the reach of the USDA and FDA, Canada, New Zealand, Australia, Japan, Israel and the European Union have banned the use of rBGH since 2000. In the Back in Washington, DC, the dairy lobby is making headway toward legislation that would make it illegal for dairy farmers to label their milk 'rBGH-free', even though producers currently do so of their own free will - whether out of health concerns or market differentiation - since doing so would suggest that rBGH was in fact harmful. 

Even the best food pyramids don't fully explain the picture (though imperfect, Dr. Weil’s is a good one). For example: the nutritional difference between spinach and iceberg lettuce – both leafy greens – varies greatly per nutrient, but is on average ten-fold higher in spinach with respect to vitamin and mineral content. In other words, you’d have to eat ten heads of iceberg to glean (some of) the nutritional benefits in one serving of spinach. So telling someone to ‘eat your veg’ is frankly like telling them avoid getting hit by a truck. A good idea, surely, but success is in the details.

Moreover, even among those who eat the healthiest of foods, how is one to know if one’s diet includes, for example, enough omega-3 fatty acids, folate or iron? And how does one account for the differences in men's and women’s nutritional needs, which certainly vary? Or how should one adjust nutrient intake with regard to a specific health issue, like anemia or osteoarthritis? As good as they are for general guidance, food pyramids have limits.

In short, some pyramids are misleading and outright harmful to health, as we’ve seen. Others offer useful rules of thumb for those of us who want to avoid the pitfalls of highly processed or engineered foods, which are everywhere. But in the end, the optimal resource is one that takes into account the full spectrum and quantity of nutrients that your body needs – not just food types and numbers of servings – and uses it to determine whether you are in fact feeding your body properly. 

Easier said than done.  

So let’s start with what we know.

We know that we, like all living creatures, evolved over millennia alongside the rest of the planet and its food resources – in fact, because of it. We evolved to eat what grew naturally eons before we began to act on it, manipulate it, and sell it. We learned what made us stronger through trial and error, what to avoid, and we passed that knowledge on through the generations so that our progeny could flourish. In short, nature and humans are symbiotic, both biologically and evolutionarily. Our ancestral food pyramid looked something like this:

Copyright FFFL

Although agriculture has been practiced for roughly 10,000 years, it is only since the Second Industrial Revolution, which began in the 1850’s, that we who live in industrialized nations began the short transformation from largely producing our own food (or buying it from someone we knew, personally) to relying fully – as we do today – on the post-industrial food production complex to fuel us. The United States has led this revolution, owing in part to a desire to stabilize crop production and related costs, which ultimately translates to what shoppers pay at the checkout. Beginning with the 1960’s, as told by Greg Crister in his wonderful book Fat Land, President Nixon’s Secretary of Agriculture Earl Butz struck two historically consequential deals insofar as industrializing food. The first was with the Japanese, who had recently managed to create a new sugar-replacement from corn: high fructose corn syrup. This stabilized and dramatically lowered the price of sugar. The second deal was with the Malaysians, who had found a way to produce a cheap preservative and flavor-enhancer from palm trees: palm oil, which as Crister says, has a saturated fat content equal to that of 'pig lard'. Between the two, food became cheap, tasty, and longer-lived, paving the way for the fast food industry to flourish. Crister argues that the birth of that industry was a turning point in our relationship to food. Cheap, quick food led the increasing outsourcing of food preparation from our own kitchens to those of food businesses.

Beyond these two historic deals, Butz was known for his ‘get big or get out’ policies towards farming, which initiated the paradigm shift from small family-run farms to commodity mega-farming. The 'Henry Ford of crops' did for farming what the assembly line did for the auto industry. Butz incited farmers to plant corn ‘fencerow to fencerow’, and created the subsidies that moved growers away from their traditional produce toward commodity crops like corn, soy and wheat to maximize production and drive prices down. Butz, more than any other individual, is ultimately responsible for the demise of the small farm and the rise of Big Ag, the according shift from food to commodity and the resulting plunge in the price of food production, with Big Ag companies overtaking the whole business of feeding the nation.

To wit: in the 1980’s, Monsanto shifted from its historic focus on creating and selling some of the world's deadliest chemicals (Saccharin, PCBs, DDT and Agent Orange, to name just four) to re-engineering nature, and in 1994 began to sell product to farmers through its acquisition of Calgene, the first company to market a genetically modified (GM) food: the slow-to-ripen, rot-resistant Flavr Savr tomato. Since then, through a series of acquisitions and mergers, Monsanto has grown over the past 30 years into the world’s largest producer and seller of crop seeds, holding 27% of the global market. With its competitors and occasional collaborators – Dow Chemical Company, Dupont and Switzerland's Syngenta – these companies create the seeds, chemicals and processes that in turn grow the vast majority of the world’s food resources. Said another way, these companies sell the source ingredients to the world’s largest retail food production companies: General Mills, Kellog, Mars, Coca-Cola, Danone, Kraft, Nestle, PepsiCo, Unilever and Mondelez, who between them create and sell the vast majority of things we buy from the shelves of our supermarkets. The graphic below lists names of individuals who have held positions - including top leadership roles - with both Monsanto and the USDA, FDA and US Government - often multiple times.

Okay. Back to our stomachs. 

Nature created synergistic relationships between that which eats and that which is eaten. Grazing animals such as cows and sheep have rumens which break down otherwise indigestible grasses. Salmon are carnivores and eat other sea creatures, such as plankton, small fish and shrimp. Chickens are foraging omnivores and eat berries, insects, worms and seeds. In addition to photosynthesis, fruit and vegetable, plants pull nutrients directly from the soil and water beneath them, osmosing whatever directly lands on, or is dissolved in, those two nutrient sources.

Nowhere in the past 2.3 billion years, when the Earth’s atmosphere shifted from a methane to oxygen base and nature as we know it began to evolve, were there plants who fed on weed killer and industrial sludge; cows and chickens who ate brewer’s spent grain, silage, and pesticides (or spent lives in an atmosphere of ammonia and fecal matter); or salmon who ate corn, soy and canola, or chicken feathers, necks and intestines.

Likewise, we did not evolve to ingest any of those byproducts either, through the source foods we eat, to say nothing about the proliferation of sugar, salt, oils and grains that we ingest daily, unlike our ancestors.

And yet here we are.  

The bottom line for achieving nutritional health is that we need to return to the nutrient sources we evolved to eat, in the proportions and quality levels of pre-industrial food. Doing so takes substantial effort in today's context of fast, cheap, industrial food product, but it is readily achievable, since real foods are still widely available, close to your home, at reasonable cost, that carry a minimal industrial footprint.

The blogs that follow will begin to dissect specific food groups, nutrients, common questions and misconceptions, and provide detailed charts of nutrient values in the world’s truly healthiest, naturally occurring everyday foods.

Stay tuned.